Compare commits
10 Commits
1b552ffc9a
...
5c51b6a0a2
Author | SHA1 | Date | |
---|---|---|---|
5c51b6a0a2 | |||
c4167681d7 | |||
e74c1127a5 | |||
1c8542bdc4 | |||
f85d128780 | |||
c3d402a44a | |||
3526ab4b31 | |||
1fceb128bb | |||
9f31a9161a | |||
c61bae984c |
7
makefile
7
makefile
|
@ -1,2 +1,9 @@
|
|||
dev:
|
||||
go run probppl.go
|
||||
|
||||
prod:
|
||||
go build -o probppl
|
||||
./probppl
|
||||
|
||||
record:
|
||||
make prod > record.txt
|
||||
|
|
108
probppl.go
108
probppl.go
|
@ -5,36 +5,36 @@ import (
|
|||
"git.nunosempere.com/NunoSempere/probppl/choose"
|
||||
"math"
|
||||
rand "math/rand/v2"
|
||||
"sync"
|
||||
)
|
||||
|
||||
type src = *rand.Rand
|
||||
type pplKnownDistrib = map[int64]float64
|
||||
type IntProb struct {
|
||||
N int64
|
||||
p float64
|
||||
}
|
||||
type IntProbs = []IntProb
|
||||
type IntProbsWeights struct {
|
||||
IntProbs IntProbs
|
||||
w int64
|
||||
}
|
||||
|
||||
func generatePeopleKnownDistribution(r src) map[int64]float64 {
|
||||
mapping := make(map[int64]float64)
|
||||
func generatePeopleKnownDistribution(r src) IntProbs {
|
||||
|
||||
var probabilities IntProbs
|
||||
sum := 0.0
|
||||
|
||||
// Consider zero case separately
|
||||
/*p0 := r.Float64()
|
||||
mapping[0.0] = p0
|
||||
sum += p0
|
||||
*/
|
||||
|
||||
// Consider successive exponents of 1.5
|
||||
num := 16.0
|
||||
base := 2.0
|
||||
for i := 1; i < 8; i++ {
|
||||
num = num * base
|
||||
for i := 16; i <= 2048; i *= 2 {
|
||||
p := r.Float64()
|
||||
mapping[int64(num)] = p
|
||||
probabilities = append(probabilities, IntProb{N: int64(i), p: p})
|
||||
sum += p
|
||||
}
|
||||
|
||||
for key, value := range mapping {
|
||||
mapping[key] = value / sum
|
||||
for i := range probabilities {
|
||||
probabilities[i].p = probabilities[i].p / sum
|
||||
}
|
||||
|
||||
return mapping
|
||||
return probabilities
|
||||
}
|
||||
|
||||
func chooseWrapper(n int64, k int64) int64 {
|
||||
|
@ -75,13 +75,13 @@ func getMatchesDrawGivenNPeopleKnown(n int64, r src) int64 {
|
|||
≥3: 9.5% | 14
|
||||
*/
|
||||
|
||||
func drawFromDistributionWithReplacement(d pplKnownDistrib, r src) int64 {
|
||||
func drawFromDistributionWithReplacement(d IntProbs, r src) int64 {
|
||||
pp := r.Float64()
|
||||
sum := 0.0
|
||||
for i, p := range d {
|
||||
sum += p
|
||||
for i := range d {
|
||||
sum += d[i].p
|
||||
if pp <= sum {
|
||||
return int64(i)
|
||||
return int64(d[i].N) // this introduces some non-determinism, as order of maps in go isn't guaranteed
|
||||
}
|
||||
|
||||
}
|
||||
|
@ -95,7 +95,7 @@ func aboutEq(a int64, b int64) bool {
|
|||
return ((-h) <= (a - b)) && ((a - b) <= h)
|
||||
}
|
||||
|
||||
func draw148PplFromDistributionAndCheck(d pplKnownDistrib, r src, show bool) int64 {
|
||||
func draw148PplFromDistributionAndCheck(d IntProbs, r src, show bool) int64 {
|
||||
|
||||
count := make(map[int64]int64)
|
||||
count[0] = 0
|
||||
|
@ -118,9 +118,9 @@ func draw148PplFromDistributionAndCheck(d pplKnownDistrib, r src, show bool) int
|
|||
}
|
||||
}
|
||||
|
||||
func getUnnormalizedBayesianUpdateForDistribution(d pplKnownDistrib, r src) int64 {
|
||||
func getUnnormalizedBayesianUpdateForDistribution(d IntProbs, r src) int64 {
|
||||
var sum int64 = 0
|
||||
n := 100
|
||||
n := 30_000
|
||||
for i := 0; i < n; i++ {
|
||||
/* if i%1000 == 0 {
|
||||
fmt.Println(i)
|
||||
|
@ -134,22 +134,52 @@ func getUnnormalizedBayesianUpdateForDistribution(d pplKnownDistrib, r src) int6
|
|||
|
||||
func main() {
|
||||
|
||||
var r = rand.New(rand.NewPCG(uint64(1), uint64(2)))
|
||||
n_dists := 30_000
|
||||
var dists = make([]IntProbsWeights, n_dists)
|
||||
|
||||
sum := int64(0)
|
||||
for i := 0; i < 1000; i++ {
|
||||
// Prepare for concurrency
|
||||
num_threads := 32
|
||||
var wg sync.WaitGroup
|
||||
wg.Add(num_threads)
|
||||
|
||||
for i := range num_threads {
|
||||
go func() {
|
||||
defer wg.Done()
|
||||
var r = rand.New(rand.NewPCG(uint64(i), uint64(i+1)))
|
||||
for j := i * (n_dists / num_threads); j < (i+1)*(n_dists/num_threads); j++ {
|
||||
people_known_distribution := generatePeopleKnownDistribution(r)
|
||||
result := getUnnormalizedBayesianUpdateForDistribution(people_known_distribution, r)
|
||||
/*
|
||||
if i%10 == 0 {
|
||||
fmt.Printf("%d/%d\n", i, n_dists)
|
||||
}
|
||||
*/
|
||||
if result > 0 {
|
||||
dists[j] = IntProbsWeights{IntProbs: people_known_distribution, w: result}
|
||||
}
|
||||
}
|
||||
|
||||
}()
|
||||
|
||||
people_known_distribution := generatePeopleKnownDistribution(r)
|
||||
// fmt.Println(people_known_distribution)
|
||||
result := getUnnormalizedBayesianUpdateForDistribution(people_known_distribution, r)
|
||||
fmt.Println(i)
|
||||
if result > 0 {
|
||||
fmt.Println(people_known_distribution)
|
||||
fmt.Println(result)
|
||||
}
|
||||
sum += result
|
||||
// fmt.Println(result)
|
||||
}
|
||||
fmt.Println(sum)
|
||||
|
||||
wg.Wait()
|
||||
// Now calculate the posterior
|
||||
sum_weights := int64(0)
|
||||
for _, dist := range dists {
|
||||
sum_weights += dist.w
|
||||
}
|
||||
|
||||
for i := int64(16); i <= 2048; i *= 2 {
|
||||
p := 0.0
|
||||
for _, dist := range dists {
|
||||
for _, int_prob := range dist.IntProbs {
|
||||
if int_prob.N == i {
|
||||
p += float64(dist.w) * int_prob.p
|
||||
}
|
||||
}
|
||||
}
|
||||
p = p / float64(sum_weights)
|
||||
fmt.Printf("%d: %f\n", i, p)
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user