save final version, which goes on for about 1h

This commit is contained in:
NunoSempere 2024-02-25 18:55:05 -03:00
parent 3526ab4b31
commit c3d402a44a
3 changed files with 35 additions and 18 deletions

View File

@ -1,2 +1,6 @@
dev:
go run probppl.go
prod:
go build -o probppl
./probppl

BIN
probppl Executable file

Binary file not shown.

View File

@ -8,24 +8,24 @@ import (
)
type src = *rand.Rand
type IntProbability struct {
type IntProb struct {
N int64
p float64
}
type IntProbabilities = []IntProbability
type IntProbabilitiesWeights struct {
IntProb IntProbabilities
w int64
type IntProbs = []IntProb
type IntProbsWeights struct {
IntProbs IntProbs
w int64
}
func generatePeopleKnownDistribution(r src) IntProbabilities {
func generatePeopleKnownDistribution(r src) IntProbs {
var probabilities IntProbabilities
var probabilities IntProbs
sum := 0.0
for i := 16; i <= 2048; i *= 2 {
p := r.Float64()
probabilities = append(probabilities, IntProbability{N: int64(i), p: p})
probabilities = append(probabilities, IntProb{N: int64(i), p: p})
sum += p
}
@ -74,7 +74,7 @@ func getMatchesDrawGivenNPeopleKnown(n int64, r src) int64 {
3: 9.5% | 14
*/
func drawFromDistributionWithReplacement(d IntProbabilities, r src) int64 {
func drawFromDistributionWithReplacement(d IntProbs, r src) int64 {
pp := r.Float64()
sum := 0.0
for i := range d {
@ -94,7 +94,7 @@ func aboutEq(a int64, b int64) bool {
return ((-h) <= (a - b)) && ((a - b) <= h)
}
func draw148PplFromDistributionAndCheck(d IntProbabilities, r src, show bool) int64 {
func draw148PplFromDistributionAndCheck(d IntProbs, r src, show bool) int64 {
count := make(map[int64]int64)
count[0] = 0
@ -117,9 +117,9 @@ func draw148PplFromDistributionAndCheck(d IntProbabilities, r src, show bool) in
}
}
func getUnnormalizedBayesianUpdateForDistribution(d IntProbabilities, r src) int64 {
func getUnnormalizedBayesianUpdateForDistribution(d IntProbs, r src) int64 {
var sum int64 = 0
n := 1000
n := 10_000
for i := 0; i < n; i++ {
/* if i%1000 == 0 {
fmt.Println(i)
@ -135,24 +135,37 @@ func main() {
var r = rand.New(rand.NewPCG(uint64(1), uint64(2)))
var distribs []IntProbabilitiesWeights
var dists []IntProbsWeights
sum_weights := int64(0)
for i := 0; i < 100; i++ {
for i := 0; i < 10_000; i++ {
people_known_distribution := generatePeopleKnownDistribution(r)
// fmt.Println(people_known_distribution)
result := getUnnormalizedBayesianUpdateForDistribution(people_known_distribution, r)
// fmt.Println(i)
if result > 0 {
fmt.Println(people_known_distribution)
fmt.Println(result)
distribs = append(distribs, IntProbabilitiesWeights{IntProb: people_known_distribution, w: result})
// fmt.Println(people_known_distribution)
// fmt.Println(result)
dists = append(dists, IntProbsWeights{IntProbs: people_known_distribution, w: result})
}
sum_weights += result
// fmt.Println(result)
}
// fmt.Println(distribs)
// fmt.Println(dists)
// Now calculate the posterior
for i := int64(16); i <= 2048; i *= 2 {
p := 0.0
for _, dist := range dists {
for _, int_prob := range dist.IntProbs {
if int_prob.N == i {
p += float64(dist.w) * int_prob.p
}
}
}
p = p / float64(sum_weights)
fmt.Printf("%d: %f\n", i, p)
}
}