Compare commits
9 Commits
ad70db5f14
...
e93316446c
Author | SHA1 | Date | |
---|---|---|---|
e93316446c | |||
2314bf5db2 | |||
7d59beb4bf | |||
3ca32655d5 | |||
e473223bbd | |||
7d8a582bd5 | |||
10941f00ac | |||
884adba214 | |||
2f663b1262 |
|
@ -193,11 +193,13 @@ Done:
|
|||
- [x] Make -n flag work
|
||||
- [x] Add flag to repeat input lines (useful when reading from files)
|
||||
- [x] Add percentages
|
||||
- [x] Consider adding an understanding of percentages
|
||||
|
||||
To (possibly) do:
|
||||
|
||||
- [ ] Consider implications of sampling strategy for operating variables in this case.
|
||||
- [ ] Document mixture distributions
|
||||
- [ ] Fix lognormal multiplication and division by 0 or < 0
|
||||
- [ ] Consider adding an understanding of percentages
|
||||
- [ ] With the -f command line option, the program doesn't read from stdin after finishing reading the file
|
||||
- [ ] Add functions. Now easier to do with an explicit representation of the stakc
|
||||
- [ ] Think about how to draw a histogram from samples
|
||||
|
|
92
fermi.go
92
fermi.go
|
@ -20,7 +20,7 @@ type Stack struct {
|
|||
}
|
||||
|
||||
type Dist interface {
|
||||
Samples() []float64
|
||||
Sampler(int, sample.State) float64
|
||||
}
|
||||
|
||||
type Scalar float64
|
||||
|
@ -41,27 +41,23 @@ type FilledSamples struct {
|
|||
|
||||
/* Dist interface functions */
|
||||
// https://go.dev/tour/methods/9
|
||||
func (p Scalar) Samples() []float64 {
|
||||
xs := make([]float64, N_SAMPLES)
|
||||
for i := 0; i < N_SAMPLES; i++ {
|
||||
xs[i] = float64(p)
|
||||
}
|
||||
return xs
|
||||
func (p Scalar) Sampler(i int, r sample.State) float64 {
|
||||
return float64(p)
|
||||
}
|
||||
|
||||
func (ln Lognormal) Samples() []float64 {
|
||||
sampler := func(r sample.Src) float64 { return sample.Sample_to(ln.low, ln.high, r) }
|
||||
// Can't do parallel because then I'd have to await throughout the code
|
||||
return sample.Sample_serially(sampler, N_SAMPLES)
|
||||
func (ln Lognormal) Sampler(i int, r sample.State) float64 {
|
||||
return sample.Sample_to(ln.low, ln.high, r)
|
||||
}
|
||||
|
||||
func (beta Beta) Samples() []float64 {
|
||||
sampler := func(r sample.Src) float64 { return sample.Sample_beta(beta.a, beta.b, r) }
|
||||
return sample.Sample_serially(sampler, N_SAMPLES)
|
||||
func (beta Beta) Sampler(i int, r sample.State) float64 {
|
||||
return sample.Sample_beta(beta.a, beta.b, r)
|
||||
}
|
||||
|
||||
func (fs FilledSamples) Samples() []float64 {
|
||||
return fs.xs
|
||||
func (fs FilledSamples) Sampler(i int, r sample.State) float64 {
|
||||
// This is a bit subtle, because sampling from FilledSamples randomly iteratively converges
|
||||
// to something different than the initial distribution
|
||||
// So instead we have an i parameter.
|
||||
return fs.xs[i]
|
||||
}
|
||||
|
||||
/* Constants */
|
||||
|
@ -156,13 +152,12 @@ func prettyPrintDist(dist Dist) {
|
|||
|
||||
func printAndReturnErr(err_msg string) error {
|
||||
fmt.Println(err_msg)
|
||||
// fmt.Println(HELP_MSG)
|
||||
fmt.Println("Type \"help\" (without quotes) to see a pseudogrammar and examples")
|
||||
return errors.New(err_msg)
|
||||
}
|
||||
|
||||
func prettyPrintStats(dist Dist) {
|
||||
xs := dist.Samples()
|
||||
xs := sample.Sample_serially(dist.Sampler, N_SAMPLES)
|
||||
n := len(xs)
|
||||
|
||||
mean := 0.0
|
||||
|
@ -197,15 +192,14 @@ func prettyPrintStats(dist Dist) {
|
|||
print_ci(0.90, "ci 90%: ")
|
||||
print_ci(0.95, "ci 95%: ")
|
||||
print_ci(0.99, "ci 99%: ")
|
||||
|
||||
}
|
||||
|
||||
/* Operations */
|
||||
// Generic operations with samples
|
||||
func operateDistsAsSamples(dist1 Dist, dist2 Dist, op string) (Dist, error) {
|
||||
|
||||
xs := dist1.Samples()
|
||||
ys := dist2.Samples()
|
||||
xs := sample.Sample_serially(dist1.Sampler, N_SAMPLES)
|
||||
ys := sample.Sample_serially(dist2.Sampler, N_SAMPLES)
|
||||
zs := make([]float64, N_SAMPLES)
|
||||
|
||||
for i := 0; i < N_SAMPLES; i++ {
|
||||
|
@ -354,6 +348,41 @@ func operateDists(old_dist Dist, new_dist Dist, op string) (Dist, error) {
|
|||
}
|
||||
}
|
||||
|
||||
/* Mixtures */
|
||||
func parseMixture(words []string, vars map[string]Dist) (Dist, error) {
|
||||
// mx, mix, var weight var weight var weight ...
|
||||
// Check syntax
|
||||
if len(words)%2 != 0 {
|
||||
return nil, printAndReturnErr("Not a mixture. \nMixture syntax: \nmx x 2.5 y 8 z 10\ni.e.: mx var weight var2 weight2 ... var_n weight_n")
|
||||
}
|
||||
|
||||
var fs []func(int, sample.State) float64
|
||||
var weights []float64
|
||||
|
||||
for i, word := range words {
|
||||
if i%2 == 0 {
|
||||
dist, exists := vars[word]
|
||||
if !exists {
|
||||
return nil, printAndReturnErr("Expected mixture variable but didn't get a variable. \nMixture syntax: \nmx x 2.5 y 8 z 10\ni.e.: mx var weight var2 weight2 ... var_n weight_n")
|
||||
}
|
||||
f := dist.Sampler
|
||||
fs = append(fs, f)
|
||||
} else {
|
||||
weight, err := pretty.ParseFloat(word)
|
||||
if err != nil {
|
||||
return nil, printAndReturnErr("Expected mixture weight but didn't get a float. \nMixture syntax: \nmx x 2.5 y 8 z 10\ni.e.: mx var weight var2 weight2 ... var_n weight_n")
|
||||
}
|
||||
weights = append(weights, weight)
|
||||
}
|
||||
}
|
||||
// Sample from mixture
|
||||
xs, err := sample.Sample_mixture_serially_from_samplers(fs, weights, N_SAMPLES)
|
||||
if err != nil {
|
||||
return nil, printAndReturnErr(err.Error())
|
||||
}
|
||||
return FilledSamples{xs: xs}, nil
|
||||
}
|
||||
|
||||
/* Parser and repl */
|
||||
func parseWordsErr(err_msg string) (string, Dist, error) {
|
||||
return "", nil, printAndReturnErr(err_msg)
|
||||
|
@ -364,11 +393,11 @@ func parseWordsIntoOpAndDist(words []string, vars map[string]Dist) (string, Dist
|
|||
var dist Dist
|
||||
|
||||
switch words[0] {
|
||||
case "*", "/", "+", "-":
|
||||
case "*", "/", "+", "-", "mx":
|
||||
op = words[0]
|
||||
words = words[1:]
|
||||
default:
|
||||
op = "*" // later, change the below to
|
||||
op = "*"
|
||||
}
|
||||
|
||||
switch len(words) {
|
||||
|
@ -400,18 +429,29 @@ func parseWordsIntoOpAndDist(words []string, vars map[string]Dist) (string, Dist
|
|||
}
|
||||
dist = Lognormal{low: new_low, high: new_high}
|
||||
case 3:
|
||||
if words[0] == "beta" || words[0] == "b" {
|
||||
switch {
|
||||
case words[0] == "beta" || words[0] == "b":
|
||||
a, err1 := pretty.ParseFloat(words[1])
|
||||
b, err2 := pretty.ParseFloat(words[2])
|
||||
if err1 != nil || err2 != nil {
|
||||
return parseWordsErr("Trying to specify a beta distribution? Try beta 1 2")
|
||||
}
|
||||
dist = Beta{a: a, b: b}
|
||||
} else {
|
||||
default:
|
||||
return parseWordsErr("Input not understood or not implemented yet")
|
||||
}
|
||||
default:
|
||||
return parseWordsErr("Input not understood or not implemented yet")
|
||||
switch op {
|
||||
case "mx":
|
||||
tmp, err := parseMixture(words, vars)
|
||||
if err != nil {
|
||||
return parseWordsErr("Error parsing a mixture: " + err.Error())
|
||||
}
|
||||
dist = tmp
|
||||
op = "*"
|
||||
default:
|
||||
return parseWordsErr("Input not understood or not implemented yet")
|
||||
}
|
||||
}
|
||||
return op, dist, nil
|
||||
}
|
||||
|
|
2
go.mod
2
go.mod
|
@ -1,3 +1,5 @@
|
|||
module git.nunosempere.com/NunoSempere/fermi
|
||||
|
||||
go 1.22.1
|
||||
|
||||
require github.com/pkg/errors v0.9.1 // indirect
|
||||
|
|
2
go.sum
Normal file
2
go.sum
Normal file
|
@ -0,0 +1,2 @@
|
|||
github.com/pkg/errors v0.9.1 h1:FEBLx1zS214owpjy7qsBeixbURkuhQAwrK5UwLGTwt4=
|
||||
github.com/pkg/errors v0.9.1/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
|
17
more/time-to-botec.fermi
Normal file
17
more/time-to-botec.fermi
Normal file
|
@ -0,0 +1,17 @@
|
|||
0
|
||||
=. a
|
||||
|
||||
1
|
||||
=. b
|
||||
|
||||
1 3
|
||||
=. c
|
||||
|
||||
2 10
|
||||
=. d
|
||||
|
||||
mx a 60% b 20% c 10% d 10%
|
||||
|
||||
stats
|
||||
|
||||
exit
|
151
sample/sample.go
151
sample/sample.go
|
@ -1,44 +1,54 @@
|
|||
package sample
|
||||
|
||||
import "math"
|
||||
import "sync"
|
||||
import rand "math/rand/v2"
|
||||
import (
|
||||
"math"
|
||||
"sync"
|
||||
|
||||
rand "math/rand/v2"
|
||||
|
||||
"github.com/pkg/errors"
|
||||
)
|
||||
|
||||
// https://pkg.go.dev/math/rand/v2
|
||||
|
||||
type Src = *rand.Rand
|
||||
type func64 = func(Src) float64
|
||||
type State = *rand.Rand
|
||||
type func64 = func(State) float64
|
||||
type func64i = func(int, State) float64
|
||||
|
||||
var global_r = rand.New(rand.NewPCG(uint64(1), uint64(2)))
|
||||
var global_state = rand.New(rand.NewPCG(uint64(1), uint64(2)))
|
||||
|
||||
func Sample_unit_uniform(r Src) float64 {
|
||||
func Sample_int(n int, r State) int {
|
||||
return r.IntN(n)
|
||||
}
|
||||
|
||||
func Sample_unit_uniform(r State) float64 {
|
||||
return r.Float64()
|
||||
}
|
||||
|
||||
func Sample_unit_normal(r Src) float64 {
|
||||
func Sample_unit_normal(r State) float64 {
|
||||
return r.NormFloat64()
|
||||
}
|
||||
|
||||
func Sample_uniform(start float64, end float64, r Src) float64 {
|
||||
func Sample_uniform(start float64, end float64, r State) float64 {
|
||||
return Sample_unit_uniform(r)*(end-start) + start
|
||||
}
|
||||
|
||||
func Sample_normal(mean float64, sigma float64, r Src) float64 {
|
||||
func Sample_normal(mean float64, sigma float64, r State) float64 {
|
||||
return mean + Sample_unit_normal(r)*sigma
|
||||
}
|
||||
|
||||
func Sample_lognormal(logmean float64, logstd float64, r Src) float64 {
|
||||
func Sample_lognormal(logmean float64, logstd float64, r State) float64 {
|
||||
return (math.Exp(Sample_normal(logmean, logstd, r)))
|
||||
}
|
||||
|
||||
func Sample_normal_from_90_ci(low float64, high float64, r Src) float64 {
|
||||
func Sample_normal_from_90_ci(low float64, high float64, r State) float64 {
|
||||
var normal90 float64 = 1.6448536269514727
|
||||
var mean float64 = (high + low) / 2.0
|
||||
var std float64 = (high - low) / (2.0 * normal90)
|
||||
return Sample_normal(mean, std, r)
|
||||
}
|
||||
|
||||
func Sample_to(low float64, high float64, r Src) float64 {
|
||||
func Sample_to(low float64, high float64, r State) float64 {
|
||||
// Given a (positive) 90% confidence interval,
|
||||
// returns a sample from a lognorma with a matching 90% c.i.
|
||||
// Key idea: If we want a lognormal with 90% confidence interval [a, b]
|
||||
|
@ -49,7 +59,7 @@ func Sample_to(low float64, high float64, r Src) float64 {
|
|||
return math.Exp(Sample_normal_from_90_ci(loglow, loghigh, r))
|
||||
}
|
||||
|
||||
func Sample_gamma(alpha float64, r Src) float64 {
|
||||
func Sample_gamma(alpha float64, r State) float64 {
|
||||
|
||||
// a simple method for generating gamma variables, marsaglia and wan tsang, 2001
|
||||
// https://dl.acm.org/doi/pdf/10.1145/358407.358414
|
||||
|
@ -99,13 +109,13 @@ func Sample_gamma(alpha float64, r Src) float64 {
|
|||
}
|
||||
}
|
||||
|
||||
func Sample_beta(a float64, b float64, r Src) float64 {
|
||||
func Sample_beta(a float64, b float64, r State) float64 {
|
||||
gamma_a := Sample_gamma(a, r)
|
||||
gamma_b := Sample_gamma(b, r)
|
||||
return gamma_a / (gamma_a + gamma_b)
|
||||
}
|
||||
|
||||
func Sample_mixture(fs []func64, weights []float64, r Src) float64 {
|
||||
func Sample_mixture_once(fs []func64, weights []float64, r State) float64 {
|
||||
|
||||
// fmt.Println("weights initially: ", weights)
|
||||
var sum_weights float64 = 0
|
||||
|
@ -139,15 +149,104 @@ func Sample_mixture(fs []func64, weights []float64, r Src) float64 {
|
|||
|
||||
}
|
||||
|
||||
func Sample_serially(f func64, n_samples int) []float64 {
|
||||
func Sample_serially(f func64i, n_samples int) []float64 {
|
||||
xs := make([]float64, n_samples)
|
||||
// var global_r = rand.New(rand.NewPCG(uint64(1), uint64(2)))
|
||||
// var global_state = rand.New(rand.NewPCG(uint64(1), uint64(2)))
|
||||
for i := 0; i < n_samples; i++ {
|
||||
xs[i] = f(global_r)
|
||||
xs[i] = f(i, global_state)
|
||||
}
|
||||
return xs
|
||||
}
|
||||
|
||||
func Sample_mixture_serially_from_samples(fs [][]float64, weights []float64, n_samples int) ([]float64, error) {
|
||||
|
||||
// Checks
|
||||
if len(weights) != len(fs) {
|
||||
return nil, errors.New("Mixture must have dists and weights alternated")
|
||||
}
|
||||
for _, f := range fs {
|
||||
if len(f) < n_samples {
|
||||
return nil, errors.New("Mixture components don't have enough samples")
|
||||
}
|
||||
}
|
||||
// fmt.Println("weights initially: ", weights)
|
||||
var sum_weights float64 = 0
|
||||
for _, weight := range weights {
|
||||
sum_weights += weight
|
||||
}
|
||||
|
||||
var total float64 = 0
|
||||
var cumsummed_normalized_weights = append([]float64(nil), weights...)
|
||||
for i, weight := range weights {
|
||||
total += weight / sum_weights
|
||||
cumsummed_normalized_weights[i] = total
|
||||
}
|
||||
if total == 0.0 {
|
||||
return nil, errors.New("Cummulative sum of weights in mixture must be > 0.0")
|
||||
}
|
||||
|
||||
// fmt.Printf("Weights: %v\n", cumsummed_normalized_weights)
|
||||
|
||||
xs := make([]float64, n_samples)
|
||||
// var global_state = rand.New(rand.NewPCG(uint64(1), uint64(2)))
|
||||
for i := 0; i < n_samples; i++ {
|
||||
var flag int = 0
|
||||
var p float64 = global_state.Float64()
|
||||
for j, cnw := range cumsummed_normalized_weights {
|
||||
if p < cnw {
|
||||
xs[i] = fs[j][i]
|
||||
flag = 1
|
||||
break
|
||||
}
|
||||
}
|
||||
if flag == 0 {
|
||||
xs[i] = fs[len(fs)-1][i]
|
||||
}
|
||||
}
|
||||
return xs, nil
|
||||
}
|
||||
|
||||
func Sample_mixture_serially_from_samplers(fs []func64i, weights []float64, n_samples int) ([]float64, error) {
|
||||
|
||||
// Checks
|
||||
if len(weights) != len(fs) {
|
||||
return nil, errors.New("Mixture must have dists and weights alternated")
|
||||
}
|
||||
// fmt.Println("weights initially: ", weights)
|
||||
var sum_weights float64 = 0
|
||||
for _, weight := range weights {
|
||||
sum_weights += weight
|
||||
}
|
||||
|
||||
var total float64 = 0
|
||||
var cumsummed_normalized_weights = append([]float64(nil), weights...)
|
||||
for i, weight := range weights {
|
||||
total += weight / sum_weights
|
||||
cumsummed_normalized_weights[i] = total
|
||||
}
|
||||
if total == 0.0 {
|
||||
return nil, errors.New("Cummulative sum of weights in mixture must be > 0.0")
|
||||
}
|
||||
|
||||
// fmt.Printf("Weights: %v\n", cumsummed_normalized_weights)
|
||||
xs := make([]float64, n_samples)
|
||||
for i := 0; i < n_samples; i++ {
|
||||
var flag int = 0
|
||||
var p float64 = global_state.Float64()
|
||||
for j, cnw := range cumsummed_normalized_weights {
|
||||
if p < cnw {
|
||||
xs[i] = fs[j](i, global_state)
|
||||
flag = 1
|
||||
break
|
||||
}
|
||||
}
|
||||
if flag == 0 {
|
||||
xs[i] = fs[len(fs)-1](i, global_state)
|
||||
}
|
||||
}
|
||||
return xs, nil
|
||||
}
|
||||
|
||||
func Sample_parallel(f func64, n_samples int) []float64 {
|
||||
var num_threads = 16
|
||||
var xs = make([]float64, n_samples)
|
||||
|
@ -159,8 +258,8 @@ func Sample_parallel(f func64, n_samples int) []float64 {
|
|||
go func(f func64) {
|
||||
defer wg.Done()
|
||||
var r = rand.New(rand.NewPCG(uint64(i), uint64(i+1)))
|
||||
for i := range xs_i {
|
||||
xs_i[i] = f(r)
|
||||
for j := range xs_i {
|
||||
xs_i[j] = f(r)
|
||||
}
|
||||
}(f)
|
||||
}
|
||||
|
@ -178,13 +277,13 @@ func main() {
|
|||
var p_c float64 = p_a * p_b
|
||||
ws := [4](float64){1 - p_c, p_c / 2, p_c / 4, p_c / 4}
|
||||
|
||||
Sample_0 := func(r Src) float64 { return 0 }
|
||||
Sample_1 := func(r Src) float64 { return 1 }
|
||||
Sample_few := func(r Src) float64 { return Sample_to(1, 3, r) }
|
||||
Sample_many := func(r Src) float64 { return Sample_to(2, 10, r) }
|
||||
Sample_0 := func(r State) float64 { return 0 }
|
||||
Sample_1 := func(r State) float64 { return 1 }
|
||||
Sample_few := func(r State) float64 { return Sample_to(1, 3, r) }
|
||||
Sample_many := func(r State) float64 { return Sample_to(2, 10, r) }
|
||||
fs := [4](func64){Sample_0, Sample_1, Sample_few, Sample_many}
|
||||
|
||||
model := func(r Src) float64 { return Sample_mixture(fs[0:], ws[0:], r) }
|
||||
model := func(r State) float64 { return Sample_mixture(fs[0:], ws[0:], r) }
|
||||
n_samples := 1_000_000
|
||||
xs := Sample_parallel(model, n_samples)
|
||||
var avg float64 = 0
|
||||
|
|
Loading…
Reference in New Issue
Block a user