forked from personal/squiggle.c
149 lines
7.7 KiB
C
149 lines
7.7 KiB
C
#include "../squiggle.h"
|
|
#include "../squiggle_more.h"
|
|
#include <math.h>
|
|
#include <stdint.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
double sample_loguniform(double a, double b, uint64_t* seed){
|
|
return exp(sample_uniform(log(a), log(b), seed));
|
|
|
|
}
|
|
|
|
int main()
|
|
{
|
|
// set randomness seed
|
|
uint64_t* seed = malloc(sizeof(uint64_t));
|
|
*seed = UINT64_MAX/64; // xorshift can't start with a seed of 0
|
|
|
|
double fermi_naive(uint64_t* seed){
|
|
double rate_of_star_formation = sample_loguniform(1,100, seed);
|
|
double fraction_of_stars_with_planets = sample_loguniform(0.1, 1, seed);
|
|
double number_of_habitable_planets_per_star_system = sample_loguniform(0.1, 1, seed);
|
|
double rate_of_life_formation_in_habitable_planets = sample_lognormal(1, 50, seed);
|
|
double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets);
|
|
// double fraction_of_habitable_planets_in_which_any_life_appears = 1-exp(-rate_of_life_formation_in_habitable_planets);
|
|
// but with more precision
|
|
double fraction_of_planets_with_life_in_which_intelligent_life_appears = sample_loguniform(0.001, 1, seed);
|
|
double fraction_of_intelligent_planets_which_are_detectable_as_such = sample_loguniform(0.01, 1, seed);
|
|
double longevity_of_detectable_civilizations = sample_loguniform(100, 10000000000, seed);
|
|
|
|
// printf(" rate_of_star_formation = %lf\n", rate_of_star_formation);
|
|
// printf(" fraction_of_stars_with_planets = %lf\n", fraction_of_stars_with_planets);
|
|
// printf(" number_of_habitable_planets_per_star_system = %lf\n", number_of_habitable_planets_per_star_system);
|
|
// printf(" rate_of_life_formation_in_habitable_planets = %.16lf\n", rate_of_life_formation_in_habitable_planets);
|
|
// printf(" fraction_of_habitable_planets_in_which_any_life_appears = %lf\n", fraction_of_habitable_planets_in_which_any_life_appears);
|
|
// printf(" fraction_of_planets_with_life_in_which_intelligent_life_appears = %lf\n", fraction_of_planets_with_life_in_which_intelligent_life_appears);
|
|
// printf(" fraction_of_intelligent_planets_which_are_detectable_as_such = %lf\n", fraction_of_intelligent_planets_which_are_detectable_as_such);
|
|
// printf(" longevity_of_detectable_civilizations = %lf\n", longevity_of_detectable_civilizations);
|
|
|
|
// Expected number of civilizations in the Milky way;
|
|
// see footnote 3 (p. 5)
|
|
double n = rate_of_star_formation *
|
|
fraction_of_stars_with_planets *
|
|
number_of_habitable_planets_per_star_system *
|
|
fraction_of_habitable_planets_in_which_any_life_appears *
|
|
fraction_of_planets_with_life_in_which_intelligent_life_appears *
|
|
fraction_of_intelligent_planets_which_are_detectable_as_such *
|
|
longevity_of_detectable_civilizations;
|
|
|
|
return n;
|
|
}
|
|
|
|
double fermi_paradox_naive(uint64_t* seed){
|
|
double n = fermi_naive(seed);
|
|
return (n > 1 ? 1 : 0);
|
|
}
|
|
|
|
double result;
|
|
for(int i=0; i<1000; i++){
|
|
result = fermi_naive(seed);
|
|
printf("result from fermi_naive: %lf\n", result);
|
|
printf("\n\n");
|
|
}
|
|
printf("result from naïve implementation: %lf\n", result);
|
|
|
|
// Thinking in log space
|
|
double fermi_logspace(uint64_t* seed){
|
|
double log_rate_of_star_formation = sample_uniform(log(1), log(100), seed);
|
|
double log_fraction_of_stars_with_planets = sample_uniform(log(0.1), log(1), seed);
|
|
double log_number_of_habitable_planets_per_star_system = sample_uniform(log(0.1), log(1), seed);
|
|
double log_fraction_of_planets_with_life_in_which_intelligent_life_appears = sample_uniform(log(0.001), log(1), seed);
|
|
double log_fraction_of_intelligent_planets_which_are_detectable_as_such = sample_uniform(log(0.01), log(1), seed);
|
|
double log_longevity_of_detectable_civilizations = sample_uniform(log(100), log(10000000000), seed);
|
|
|
|
// printf(" log_rate_of_star_formation = %lf\n", log_rate_of_star_formation);
|
|
// printf(" log_fraction_of_stars_with_planets = %lf\n", log_fraction_of_stars_with_planets);
|
|
// printf(" log_number_of_habitable_planets_per_star_system = %lf\n", log_number_of_habitable_planets_per_star_system);
|
|
// printf(" log_fraction_of_planets_with_life_in_which_intelligent_life_appears = %lf\n", log_fraction_of_planets_with_life_in_which_intelligent_life_appears);
|
|
// printf(" log_fraction_of_intelligent_planets_which_are_detectable_as_such = %lf\n", log_fraction_of_intelligent_planets_which_are_detectable_as_such);
|
|
// printf(" log_longevity_of_detectable_civilizations = %lf\n", log_longevity_of_detectable_civilizations);
|
|
|
|
double log_n1 =
|
|
log_rate_of_star_formation +
|
|
log_fraction_of_stars_with_planets +
|
|
log_number_of_habitable_planets_per_star_system +
|
|
log_fraction_of_planets_with_life_in_which_intelligent_life_appears +
|
|
log_fraction_of_intelligent_planets_which_are_detectable_as_such +
|
|
log_longevity_of_detectable_civilizations;
|
|
printf("first part of calculation: %lf\n", log_n1);
|
|
|
|
/* Consider fraction_of_habitable_planets_in_which_any_life_appears separately.
|
|
Imprecisely, we could do:
|
|
|
|
double rate_of_life_formation_in_habitable_planets = sample_lognormal(1, 50, seed);
|
|
double fraction_of_habitable_planets_in_which_any_life_appears = 1- exp(-rate_of_life_formation_in_habitable_planets);
|
|
double log_fraction_of_habitable_planets_in_which_any_life_appears = log(1-fraction_of_habitable_planets_in_which_any_life_appears);
|
|
double n = exp(log_n1) * fraction_of_habitable_planets_in_which_any_life_appears;
|
|
// or:
|
|
double n2 = exp(log_n1 + log(fraction_of_habitable_planets_in_which_any_life_appears))
|
|
|
|
However, we lose all precision here.
|
|
|
|
Now, say
|
|
a = underlying normal
|
|
b = rate_of_life_formation_in_habitable_planets = exp(underlying normal)
|
|
c = 1 - exp(-b) = fraction_of_habitable_planets_in_which_any_life_appears
|
|
d = log(c)
|
|
|
|
Now, is there some way we can d more efficiently/precisely?
|
|
Turns out there is!
|
|
|
|
Looking at the Taylor expansion for c = 1 - exp(-b), it's b - b^2/2 + b^3/6 - x^b/24, etc.
|
|
When b ~ 0 (as it is), this is close to b.
|
|
|
|
But now, if b ~ 0
|
|
c ~ b
|
|
and d = log(c) ~ log(b) = log(exp(a)) = a
|
|
*/
|
|
double log_rate_of_life_formation_in_habitable_planets = sample_normal(1, 50, seed);
|
|
printf("log_rate_of_life_formation_in_habitable_planets: %lf\n", log_rate_of_life_formation_in_habitable_planets);
|
|
|
|
double log_fraction_of_habitable_planets_in_which_any_life_appears;
|
|
if(log_rate_of_life_formation_in_habitable_planets < -32){
|
|
log_fraction_of_habitable_planets_in_which_any_life_appears = log_rate_of_life_formation_in_habitable_planets;
|
|
} else{
|
|
double rate_of_life_formation_in_habitable_planets = exp(log_rate_of_life_formation_in_habitable_planets);
|
|
double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets);
|
|
log_fraction_of_habitable_planets_in_which_any_life_appears = log(fraction_of_habitable_planets_in_which_any_life_appears);
|
|
}
|
|
printf(" log_fraction_of_habitable_planets_in_which_any_life_appears: %lf\n", log_fraction_of_habitable_planets_in_which_any_life_appears);
|
|
|
|
double log_n = log_n1 + log_fraction_of_habitable_planets_in_which_any_life_appears;
|
|
|
|
return log_n;
|
|
}
|
|
|
|
double result2;
|
|
|
|
/*
|
|
for(int i=0; i<1000; i++){
|
|
result2 = fermi_logspace(seed);
|
|
printf("result from logspace implementation: %lf.2\n", result2);
|
|
printf("\n\n");
|
|
}
|
|
*/
|
|
|
|
free(seed);
|
|
}
|