forked from personal/squiggle.c
add fermi paradox example
This commit is contained in:
parent
b99a9cb3f5
commit
bb91d78859
Binary file not shown.
|
@ -5,21 +5,144 @@
|
|||
#include <stdio.h>
|
||||
#include <stdlib.h>
|
||||
|
||||
double sample_loguniform(double a, double b, uint64_t* seed){
|
||||
return exp(sample_uniform(log(a), log(b), seed));
|
||||
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
// set randomness seed
|
||||
uint64_t* seed = malloc(sizeof(uint64_t));
|
||||
*seed = 1000; // xorshift can't start with a seed of 0
|
||||
*seed = UINT64_MAX/64; // xorshift can't start with a seed of 0
|
||||
|
||||
int n = 1000000;
|
||||
double* xs = malloc(sizeof(double) * n);
|
||||
for (int i = 0; i < n; i++) {
|
||||
xs[i] = sample_to(10, 100, seed);
|
||||
double fermi_naive(uint64_t* seed){
|
||||
double rate_of_star_formation = sample_loguniform(1,100, seed);
|
||||
double fraction_of_stars_with_planets = sample_loguniform(0.1, 1, seed);
|
||||
double number_of_habitable_planets_per_star_system = sample_loguniform(0.1, 1, seed);
|
||||
double rate_of_life_formation_in_habitable_planets = sample_lognormal(1, 50, seed);
|
||||
double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets);
|
||||
// double fraction_of_habitable_planets_in_which_any_life_appears = 1-exp(-rate_of_life_formation_in_habitable_planets);
|
||||
// but with more precision
|
||||
double fraction_of_planets_with_life_in_which_intelligent_life_appears = sample_loguniform(0.001, 1, seed);
|
||||
double fraction_of_intelligent_planets_which_are_detectable_as_such = sample_loguniform(0.01, 1, seed);
|
||||
double longevity_of_detectable_civilizations = sample_loguniform(100, 10000000000, seed);
|
||||
|
||||
// printf(" rate_of_star_formation = %lf\n", rate_of_star_formation);
|
||||
// printf(" fraction_of_stars_with_planets = %lf\n", fraction_of_stars_with_planets);
|
||||
// printf(" number_of_habitable_planets_per_star_system = %lf\n", number_of_habitable_planets_per_star_system);
|
||||
// printf(" rate_of_life_formation_in_habitable_planets = %.16lf\n", rate_of_life_formation_in_habitable_planets);
|
||||
// printf(" fraction_of_habitable_planets_in_which_any_life_appears = %lf\n", fraction_of_habitable_planets_in_which_any_life_appears);
|
||||
// printf(" fraction_of_planets_with_life_in_which_intelligent_life_appears = %lf\n", fraction_of_planets_with_life_in_which_intelligent_life_appears);
|
||||
// printf(" fraction_of_intelligent_planets_which_are_detectable_as_such = %lf\n", fraction_of_intelligent_planets_which_are_detectable_as_such);
|
||||
// printf(" longevity_of_detectable_civilizations = %lf\n", longevity_of_detectable_civilizations);
|
||||
|
||||
// Expected number of civilizations in the Milky way;
|
||||
// see footnote 3 (p. 5)
|
||||
double n = rate_of_star_formation *
|
||||
fraction_of_stars_with_planets *
|
||||
number_of_habitable_planets_per_star_system *
|
||||
fraction_of_habitable_planets_in_which_any_life_appears *
|
||||
fraction_of_planets_with_life_in_which_intelligent_life_appears *
|
||||
fraction_of_intelligent_planets_which_are_detectable_as_such *
|
||||
longevity_of_detectable_civilizations;
|
||||
|
||||
return n;
|
||||
}
|
||||
ci ci_90 = array_get_90_ci(xs, n);
|
||||
printf("Recovering confidence interval of sample_to(10, 100):\n low: %f, high: %f\n", ci_90.low, ci_90.high);
|
||||
|
||||
double fermi_paradox_naive(uint64_t* seed){
|
||||
double n = fermi_naive(seed);
|
||||
return (n > 1 ? 1 : 0);
|
||||
}
|
||||
|
||||
double result;
|
||||
for(int i=0; i<1000; i++){
|
||||
result = fermi_naive(seed);
|
||||
printf("result from fermi_naive: %lf\n", result);
|
||||
printf("\n\n");
|
||||
}
|
||||
printf("result from naïve implementation: %lf\n", result);
|
||||
|
||||
// Thinking in log space
|
||||
double fermi_logspace(uint64_t* seed){
|
||||
double log_rate_of_star_formation = sample_uniform(log(1), log(100), seed);
|
||||
double log_fraction_of_stars_with_planets = sample_uniform(log(0.1), log(1), seed);
|
||||
double log_number_of_habitable_planets_per_star_system = sample_uniform(log(0.1), log(1), seed);
|
||||
double log_fraction_of_planets_with_life_in_which_intelligent_life_appears = sample_uniform(log(0.001), log(1), seed);
|
||||
double log_fraction_of_intelligent_planets_which_are_detectable_as_such = sample_uniform(log(0.01), log(1), seed);
|
||||
double log_longevity_of_detectable_civilizations = sample_uniform(log(100), log(10000000000), seed);
|
||||
|
||||
// printf(" log_rate_of_star_formation = %lf\n", log_rate_of_star_formation);
|
||||
// printf(" log_fraction_of_stars_with_planets = %lf\n", log_fraction_of_stars_with_planets);
|
||||
// printf(" log_number_of_habitable_planets_per_star_system = %lf\n", log_number_of_habitable_planets_per_star_system);
|
||||
// printf(" log_fraction_of_planets_with_life_in_which_intelligent_life_appears = %lf\n", log_fraction_of_planets_with_life_in_which_intelligent_life_appears);
|
||||
// printf(" log_fraction_of_intelligent_planets_which_are_detectable_as_such = %lf\n", log_fraction_of_intelligent_planets_which_are_detectable_as_such);
|
||||
// printf(" log_longevity_of_detectable_civilizations = %lf\n", log_longevity_of_detectable_civilizations);
|
||||
|
||||
double log_n1 =
|
||||
log_rate_of_star_formation +
|
||||
log_fraction_of_stars_with_planets +
|
||||
log_number_of_habitable_planets_per_star_system +
|
||||
log_fraction_of_planets_with_life_in_which_intelligent_life_appears +
|
||||
log_fraction_of_intelligent_planets_which_are_detectable_as_such +
|
||||
log_longevity_of_detectable_civilizations;
|
||||
printf("first part of calculation: %lf\n", log_n1);
|
||||
|
||||
/* Consider fraction_of_habitable_planets_in_which_any_life_appears separately.
|
||||
Imprecisely, we could do:
|
||||
|
||||
double rate_of_life_formation_in_habitable_planets = sample_lognormal(1, 50, seed);
|
||||
double fraction_of_habitable_planets_in_which_any_life_appears = 1- exp(-rate_of_life_formation_in_habitable_planets);
|
||||
double log_fraction_of_habitable_planets_in_which_any_life_appears = log(1-fraction_of_habitable_planets_in_which_any_life_appears);
|
||||
double n = exp(log_n1) * fraction_of_habitable_planets_in_which_any_life_appears;
|
||||
// or:
|
||||
double n2 = exp(log_n1 + log(fraction_of_habitable_planets_in_which_any_life_appears))
|
||||
|
||||
However, we lose all precision here.
|
||||
|
||||
Now, say
|
||||
a = underlying normal
|
||||
b = rate_of_life_formation_in_habitable_planets = exp(underlying normal)
|
||||
c = 1 - exp(-b) = fraction_of_habitable_planets_in_which_any_life_appears
|
||||
d = log(c)
|
||||
|
||||
Now, is there some way we can d more efficiently/precisely?
|
||||
Turns out there is!
|
||||
|
||||
Looking at the Taylor expansion for c = 1 - exp(-b), it's b - b^2/2 + b^3/6 - x^b/24, etc.
|
||||
When b ~ 0 (as it is), this is close to b.
|
||||
|
||||
But now, if b ~ 0
|
||||
c ~ b
|
||||
and d = log(c) ~ log(b) = log(exp(a)) = a
|
||||
*/
|
||||
double log_rate_of_life_formation_in_habitable_planets = sample_normal(1, 50, seed);
|
||||
printf("log_rate_of_life_formation_in_habitable_planets: %lf\n", log_rate_of_life_formation_in_habitable_planets);
|
||||
|
||||
double log_fraction_of_habitable_planets_in_which_any_life_appears;
|
||||
if(log_rate_of_life_formation_in_habitable_planets < -32){
|
||||
log_fraction_of_habitable_planets_in_which_any_life_appears = log_rate_of_life_formation_in_habitable_planets;
|
||||
} else{
|
||||
double rate_of_life_formation_in_habitable_planets = exp(log_rate_of_life_formation_in_habitable_planets);
|
||||
double fraction_of_habitable_planets_in_which_any_life_appears = -expm1(-rate_of_life_formation_in_habitable_planets);
|
||||
log_fraction_of_habitable_planets_in_which_any_life_appears = log(fraction_of_habitable_planets_in_which_any_life_appears);
|
||||
}
|
||||
printf(" log_fraction_of_habitable_planets_in_which_any_life_appears: %lf\n", log_fraction_of_habitable_planets_in_which_any_life_appears);
|
||||
|
||||
double log_n = log_n1 + log_fraction_of_habitable_planets_in_which_any_life_appears;
|
||||
|
||||
return log_n;
|
||||
}
|
||||
|
||||
double result2;
|
||||
|
||||
/*
|
||||
for(int i=0; i<1000; i++){
|
||||
result2 = fermi_logspace(seed);
|
||||
printf("result from logspace implementation: %lf.2\n", result2);
|
||||
printf("\n\n");
|
||||
}
|
||||
*/
|
||||
|
||||
printf("Size of uint64_t: %ld", sizeof(uint64_t*));
|
||||
free(seed);
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user