2023-07-23 10:41:05 +00:00
|
|
|
#include "../squiggle.h"
|
|
|
|
#include <math.h>
|
2023-07-23 13:44:22 +00:00
|
|
|
#include <stdint.h>
|
2023-07-23 10:41:05 +00:00
|
|
|
#include <stdio.h>
|
2023-07-23 13:44:22 +00:00
|
|
|
#include <stdlib.h>
|
2023-07-23 10:41:05 +00:00
|
|
|
|
2023-07-23 14:28:44 +00:00
|
|
|
#define TOLERANCE 5.0 / 1000.0
|
2023-07-23 12:00:14 +00:00
|
|
|
#define MAX_NAME_LENGTH 500
|
2023-07-23 10:41:05 +00:00
|
|
|
|
2023-07-23 12:00:14 +00:00
|
|
|
// Structs
|
2023-07-23 10:41:05 +00:00
|
|
|
|
2023-07-23 12:00:14 +00:00
|
|
|
struct array_expectations {
|
2023-07-23 13:44:22 +00:00
|
|
|
double* array;
|
|
|
|
int n;
|
|
|
|
char* name;
|
|
|
|
double expected_mean;
|
|
|
|
double expected_std;
|
|
|
|
double tolerance;
|
2023-07-23 12:00:14 +00:00
|
|
|
};
|
|
|
|
|
2023-07-23 13:44:22 +00:00
|
|
|
void test_array_expectations(struct array_expectations e)
|
|
|
|
{
|
|
|
|
double mean = array_mean(e.array, e.n);
|
|
|
|
double delta_mean = mean - e.expected_mean;
|
|
|
|
|
|
|
|
double std = array_std(e.array, e.n);
|
|
|
|
double delta_std = std - e.expected_std;
|
|
|
|
|
2023-07-23 14:28:44 +00:00
|
|
|
if ((fabs(delta_mean) / fabs(mean) > e.tolerance) && (fabs(delta_mean) > e.tolerance)) {
|
2023-07-23 13:44:22 +00:00
|
|
|
printf("[-] Mean test for %s NOT passed.\n", e.name);
|
|
|
|
printf("Mean of %s: %f, vs expected mean: %f\n", e.name, mean, e.expected_mean);
|
|
|
|
printf("delta: %f, relative delta: %f\n", delta_mean, delta_mean / fabs(mean));
|
|
|
|
} else {
|
|
|
|
printf("[x] Mean test for %s PASSED\n", e.name);
|
|
|
|
}
|
|
|
|
|
2023-07-23 14:28:44 +00:00
|
|
|
if ((fabs(delta_std) / fabs(std) > e.tolerance) && (fabs(delta_std) > e.tolerance)) {
|
2023-07-23 13:44:22 +00:00
|
|
|
printf("[-] Std test for %s NOT passed.\n", e.name);
|
|
|
|
printf("Std of %s: %f, vs expected std: %f\n", e.name, std, e.expected_std);
|
|
|
|
printf("delta: %f, relative delta: %f\n", delta_std, delta_std / fabs(std));
|
|
|
|
} else {
|
|
|
|
printf("[x] Std test for %s PASSED\n", e.name);
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("\n");
|
2023-07-23 10:41:05 +00:00
|
|
|
}
|
|
|
|
|
2023-07-23 12:00:14 +00:00
|
|
|
// Test unit uniform
|
2023-07-23 13:44:22 +00:00
|
|
|
void test_unit_uniform(uint64_t* seed)
|
|
|
|
{
|
|
|
|
int n = 1000 * 1000;
|
|
|
|
double* unit_uniform_array = malloc(sizeof(double) * n);
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
unit_uniform_array[i] = sample_unit_uniform(seed);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct array_expectations expectations = {
|
|
|
|
.array = unit_uniform_array,
|
|
|
|
.n = n,
|
|
|
|
.name = "unit uniform",
|
|
|
|
.expected_mean = 0.5,
|
|
|
|
.expected_std = sqrt(1.0 / 12.0),
|
2023-07-23 14:28:44 +00:00
|
|
|
.tolerance = TOLERANCE,
|
2023-07-23 13:44:22 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
test_array_expectations(expectations);
|
|
|
|
free(unit_uniform_array);
|
2023-07-23 12:00:14 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Test uniforms
|
2023-07-23 13:44:22 +00:00
|
|
|
void test_uniform(double start, double end, uint64_t* seed)
|
|
|
|
{
|
|
|
|
int n = 1000 * 1000;
|
|
|
|
double* uniform_array = malloc(sizeof(double) * n);
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
uniform_array[i] = sample_uniform(start, end, seed);
|
|
|
|
}
|
|
|
|
|
|
|
|
char* name = malloc(MAX_NAME_LENGTH * sizeof(char));
|
|
|
|
snprintf(name, MAX_NAME_LENGTH, "[%f, %f] uniform", start, end);
|
|
|
|
struct array_expectations expectations = {
|
|
|
|
.array = uniform_array,
|
|
|
|
.n = n,
|
|
|
|
.name = name,
|
|
|
|
.expected_mean = (start + end) / 2,
|
|
|
|
.expected_std = sqrt(1.0 / 12.0) * fabs(end - start),
|
2023-07-23 14:28:44 +00:00
|
|
|
.tolerance = fabs(end - start) * TOLERANCE,
|
2023-07-23 13:44:22 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
test_array_expectations(expectations);
|
|
|
|
free(name);
|
|
|
|
free(uniform_array);
|
2023-07-23 12:00:14 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Test unit normal
|
2023-07-23 13:44:22 +00:00
|
|
|
void test_unit_normal(uint64_t* seed)
|
|
|
|
{
|
|
|
|
int n = 1000 * 1000;
|
|
|
|
double* unit_normal_array = malloc(sizeof(double) * n);
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
unit_normal_array[i] = sample_unit_normal(seed);
|
|
|
|
}
|
|
|
|
|
|
|
|
struct array_expectations expectations = {
|
|
|
|
.array = unit_normal_array,
|
|
|
|
.n = n,
|
|
|
|
.name = "unit normal",
|
|
|
|
.expected_mean = 0,
|
|
|
|
.expected_std = 1,
|
2023-07-23 14:28:44 +00:00
|
|
|
.tolerance = TOLERANCE,
|
2023-07-23 13:44:22 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
test_array_expectations(expectations);
|
|
|
|
free(unit_normal_array);
|
2023-07-23 12:00:14 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Test normal
|
2023-07-23 13:44:22 +00:00
|
|
|
void test_normal(double mean, double std, uint64_t* seed)
|
|
|
|
{
|
|
|
|
int n = 10 * 1000 * 1000;
|
|
|
|
double* normal_array = malloc(sizeof(double) * n);
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
normal_array[i] = sample_normal(mean, std, seed);
|
|
|
|
}
|
|
|
|
|
|
|
|
char* name = malloc(MAX_NAME_LENGTH * sizeof(char));
|
|
|
|
snprintf(name, MAX_NAME_LENGTH, "normal(%f, %f)", mean, std);
|
|
|
|
struct array_expectations expectations = {
|
|
|
|
.array = normal_array,
|
|
|
|
.n = n,
|
|
|
|
.name = name,
|
|
|
|
.expected_mean = mean,
|
|
|
|
.expected_std = std,
|
2023-07-23 14:28:44 +00:00
|
|
|
.tolerance = TOLERANCE,
|
2023-07-23 13:44:22 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
test_array_expectations(expectations);
|
|
|
|
free(name);
|
|
|
|
free(normal_array);
|
2023-07-23 13:43:35 +00:00
|
|
|
}
|
|
|
|
|
|
|
|
// Test lognormal
|
2023-07-23 13:44:22 +00:00
|
|
|
void test_lognormal(double logmean, double logstd, uint64_t* seed)
|
|
|
|
{
|
|
|
|
int n = 10 * 1000 * 1000;
|
|
|
|
double* lognormal_array = malloc(sizeof(double) * n);
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
lognormal_array[i] = sample_lognormal(logmean, logstd, seed);
|
|
|
|
}
|
|
|
|
|
|
|
|
char* name = malloc(MAX_NAME_LENGTH * sizeof(char));
|
|
|
|
snprintf(name, MAX_NAME_LENGTH, "lognormal(%f, %f)", logmean, logstd);
|
|
|
|
struct array_expectations expectations = {
|
|
|
|
.array = lognormal_array,
|
|
|
|
.n = n,
|
|
|
|
.name = name,
|
|
|
|
.expected_mean = exp(logmean + pow(logstd, 2) / 2),
|
|
|
|
.expected_std = sqrt((exp(pow(logstd, 2)) - 1) * exp(2 * logmean + pow(logstd, 2))),
|
2023-07-23 14:28:44 +00:00
|
|
|
.tolerance = TOLERANCE,
|
|
|
|
};
|
|
|
|
|
|
|
|
test_array_expectations(expectations);
|
|
|
|
free(name);
|
|
|
|
free(lognormal_array);
|
|
|
|
}
|
|
|
|
|
|
|
|
// Test lognormal to
|
|
|
|
void test_to(double low, double high, uint64_t* seed)
|
|
|
|
{
|
|
|
|
int n = 10 * 1000 * 1000;
|
|
|
|
double* lognormal_array = malloc(sizeof(double) * n);
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
lognormal_array[i] = sample_to(low, high, seed);
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
char* name = malloc(MAX_NAME_LENGTH * sizeof(char));
|
|
|
|
snprintf(name, MAX_NAME_LENGTH, "to(%f, %f)", low, high);
|
|
|
|
|
|
|
|
const double NORMAL95CONFIDENCE = 1.6448536269514722;
|
|
|
|
double loglow = logf(low);
|
|
|
|
double loghigh = logf(high);
|
|
|
|
double logmean = (loglow + loghigh) / 2;
|
|
|
|
double logstd = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE);
|
|
|
|
|
|
|
|
struct array_expectations expectations = {
|
|
|
|
.array = lognormal_array,
|
|
|
|
.n = n,
|
|
|
|
.name = name,
|
|
|
|
.expected_mean = exp(logmean + pow(logstd, 2) / 2),
|
|
|
|
.expected_std = sqrt((exp(pow(logstd, 2)) - 1) * exp(2 * logmean + pow(logstd, 2))),
|
|
|
|
.tolerance = TOLERANCE,
|
2023-07-23 13:44:22 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
test_array_expectations(expectations);
|
|
|
|
free(name);
|
|
|
|
free(lognormal_array);
|
2023-07-23 12:00:14 +00:00
|
|
|
}
|
2023-07-23 11:02:56 +00:00
|
|
|
|
2023-07-23 12:00:14 +00:00
|
|
|
// Test beta
|
|
|
|
|
2023-07-23 13:44:22 +00:00
|
|
|
void test_beta(double a, double b, uint64_t* seed)
|
|
|
|
{
|
|
|
|
int n = 10 * 1000 * 1000;
|
|
|
|
double* beta_array = malloc(sizeof(double) * n);
|
|
|
|
|
|
|
|
for (int i = 0; i < n; i++) {
|
|
|
|
beta_array[i] = sample_beta(a, b, seed);
|
|
|
|
}
|
|
|
|
|
|
|
|
char* name = malloc(MAX_NAME_LENGTH * sizeof(char));
|
|
|
|
snprintf(name, MAX_NAME_LENGTH, "beta(%f, %f)", a, b);
|
|
|
|
struct array_expectations expectations = {
|
|
|
|
.array = beta_array,
|
|
|
|
.n = n,
|
|
|
|
.name = name,
|
|
|
|
.expected_mean = a / (a + b),
|
|
|
|
.expected_std = sqrt((a * b) / (pow(a + b, 2) * (a + b + 1))),
|
2023-07-23 14:28:44 +00:00
|
|
|
.tolerance = TOLERANCE,
|
2023-07-23 13:44:22 +00:00
|
|
|
};
|
|
|
|
|
|
|
|
test_array_expectations(expectations);
|
|
|
|
free(name);
|
2023-07-23 10:41:05 +00:00
|
|
|
}
|
|
|
|
|
2023-07-23 13:44:22 +00:00
|
|
|
int main()
|
|
|
|
{
|
2023-07-23 10:41:05 +00:00
|
|
|
// set randomness seed
|
2023-07-23 10:47:47 +00:00
|
|
|
uint64_t* seed = malloc(sizeof(uint64_t));
|
2023-07-23 10:41:05 +00:00
|
|
|
*seed = 1000; // xorshift can't start with a seed of 0
|
|
|
|
|
2023-07-23 13:44:22 +00:00
|
|
|
printf("Testing unit uniform\n");
|
|
|
|
test_unit_uniform(seed);
|
|
|
|
|
|
|
|
printf("Testing small uniforms\n");
|
|
|
|
for (int i = 0; i < 100; i++) {
|
|
|
|
double start = sample_uniform(-10, 10, seed);
|
|
|
|
double end = sample_uniform(-10, 10, seed);
|
|
|
|
if (end > start) {
|
|
|
|
test_uniform(start, end, seed);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("Testing wide uniforms\n");
|
|
|
|
for (int i = 0; i < 100; i++) {
|
|
|
|
double start = sample_uniform(-1000 * 1000, 1000 * 1000, seed);
|
|
|
|
double end = sample_uniform(-1000 * 1000, 1000 * 1000, seed);
|
|
|
|
if (end > start) {
|
|
|
|
test_uniform(start, end, seed);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("Testing unit normal\n");
|
|
|
|
test_unit_normal(seed);
|
|
|
|
|
|
|
|
printf("Testing small normals\n");
|
|
|
|
for (int i = 0; i < 100; i++) {
|
|
|
|
double mean = sample_uniform(-10, 10, seed);
|
|
|
|
double std = sample_uniform(0, 10, seed);
|
|
|
|
if (std > 0) {
|
|
|
|
test_normal(mean, std, seed);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("Testing larger normals\n");
|
|
|
|
for (int i = 0; i < 100; i++) {
|
|
|
|
double mean = sample_uniform(-1000 * 1000, 1000 * 1000, seed);
|
|
|
|
double std = sample_uniform(0, 1000 * 1000, seed);
|
|
|
|
if (std > 0) {
|
|
|
|
test_normal(mean, std, seed);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-07-23 14:28:44 +00:00
|
|
|
printf("Testing smaller lognormals\n");
|
|
|
|
for (int i = 0; i < 100; i++) {
|
2023-07-23 13:44:22 +00:00
|
|
|
double mean = sample_uniform(-1, 1, seed);
|
|
|
|
double std = sample_uniform(0, 1, seed);
|
|
|
|
if (std > 0) {
|
|
|
|
test_lognormal(mean, std, seed);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-07-23 14:28:44 +00:00
|
|
|
printf("Testing larger lognormals\n");
|
|
|
|
for (int i = 0; i < 100; i++) {
|
2023-07-23 13:44:22 +00:00
|
|
|
double mean = sample_uniform(-1, 5, seed);
|
|
|
|
double std = sample_uniform(0, 5, seed);
|
|
|
|
if (std > 0) {
|
|
|
|
test_lognormal(mean, std, seed);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
2023-07-23 14:28:44 +00:00
|
|
|
printf("Testing lognormals — sample_to(low, high) syntax\n");
|
|
|
|
for (int i = 0; i < 100; i++) {
|
|
|
|
double low = sample_uniform(0, 1000 * 1000, seed);
|
|
|
|
double high = sample_uniform(0, 1000 * 1000, seed);
|
|
|
|
if (low < high) {
|
|
|
|
test_to(low, high, seed);
|
|
|
|
}
|
|
|
|
}
|
2023-07-23 19:21:54 +00:00
|
|
|
// Bonus example
|
|
|
|
test_to(10, 10 * 1000, seed);
|
2023-07-23 14:28:44 +00:00
|
|
|
|
2023-07-23 13:44:22 +00:00
|
|
|
printf("Testing beta distribution\n");
|
|
|
|
for (int i = 0; i < 100; i++) {
|
|
|
|
double a = sample_uniform(0, 1000, seed);
|
|
|
|
double b = sample_uniform(0, 1000, seed);
|
|
|
|
if ((a > 0) && (b > 0)) {
|
|
|
|
test_beta(a, b, seed);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
printf("Testing larger beta distributions\n");
|
|
|
|
for (int i = 0; i < 100; i++) {
|
|
|
|
double a = sample_uniform(0, 1000 * 1000, seed);
|
|
|
|
double b = sample_uniform(0, 1000 * 1000, seed);
|
|
|
|
if ((a > 0) && (b > 0)) {
|
|
|
|
test_beta(a, b, seed);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
free(seed);
|
|
|
|
}
|