forked from personal/squiggle.c
		
	replace all floats (32 bits) with doubles (64 bits)
to fix bug after switching xorshift32 => xorshift64
This commit is contained in:
		
							parent
							
								
									32033b5c86
								
							
						
					
					
						commit
						6e228dcc6b
					
				
							
								
								
									
										16
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										16
									
								
								README.md
									
									
									
									
									
								
							| 
						 | 
				
			
			@ -68,7 +68,7 @@ This library provides two approaches:
 | 
			
		|||
```C
 | 
			
		||||
struct box {
 | 
			
		||||
    int empty;
 | 
			
		||||
    float content;
 | 
			
		||||
    double content;
 | 
			
		||||
    char* error_msg;
 | 
			
		||||
};
 | 
			
		||||
```
 | 
			
		||||
| 
						 | 
				
			
			@ -131,9 +131,9 @@ int main(){
 | 
			
		|||
    uint64_t* seed = malloc(sizeof(uint64_t));
 | 
			
		||||
    *seed = 1000; // xorshift can't start with a seed of 0
 | 
			
		||||
 | 
			
		||||
    float a = sample_to(1, 10, seed);
 | 
			
		||||
    float b = 2 * a;
 | 
			
		||||
    float c = b / a;
 | 
			
		||||
    double a = sample_to(1, 10, seed);
 | 
			
		||||
    double b = 2 * a;
 | 
			
		||||
    double c = b / a;
 | 
			
		||||
 | 
			
		||||
    printf("a: %f, b: %f, c: %f\n", a, b, c);
 | 
			
		||||
    // a: 0.607162, b: 1.214325, c: 0.500000
 | 
			
		||||
| 
						 | 
				
			
			@ -153,7 +153,7 @@ vs
 | 
			
		|||
#include <stdlib.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
 | 
			
		||||
float draw_xyz(uint64_t* seed){
 | 
			
		||||
double draw_xyz(uint64_t* seed){
 | 
			
		||||
    // function could also be placed inside main with gcc nested functions extension.
 | 
			
		||||
    return sample_to(1, 20, seed);
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -164,9 +164,9 @@ int main(){
 | 
			
		|||
    uint64_t* seed = malloc(sizeof(uint64_t));
 | 
			
		||||
    *seed = 1000; // xorshift can't start with a seed of 0
 | 
			
		||||
 | 
			
		||||
    float a = draw_xyz(seed);
 | 
			
		||||
    float b = 2 * draw_xyz(seed);
 | 
			
		||||
    float c = b / a;
 | 
			
		||||
    double a = draw_xyz(seed);
 | 
			
		||||
    double b = 2 * draw_xyz(seed);
 | 
			
		||||
    double c = b / a;
 | 
			
		||||
 | 
			
		||||
    printf("a: %f, b: %f, c: %f\n", a, b, c);
 | 
			
		||||
    // a: 0.522484, b: 10.283501, c: 19.681936
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
										
											Binary file not shown.
										
									
								
							| 
						 | 
				
			
			@ -4,22 +4,22 @@
 | 
			
		|||
#include <stdio.h>
 | 
			
		||||
 | 
			
		||||
// Estimate functions
 | 
			
		||||
float sample_0(uint64_t* seed)
 | 
			
		||||
double sample_0(uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float sample_1(uint64_t* seed)
 | 
			
		||||
double sample_1(uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    return 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float sample_few(uint64_t* seed)
 | 
			
		||||
double sample_few(uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    return sample_to(1, 3, seed);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float sample_many(uint64_t* seed)
 | 
			
		||||
double sample_many(uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    return sample_to(2, 10, seed);
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -29,15 +29,15 @@ int main(){
 | 
			
		|||
		uint64_t* seed = malloc(sizeof(uint64_t));
 | 
			
		||||
		*seed = 1000; // xorshift can't start with 0
 | 
			
		||||
 | 
			
		||||
    float p_a = 0.8;
 | 
			
		||||
    float p_b = 0.5;
 | 
			
		||||
    float p_c = p_a * p_b;
 | 
			
		||||
    double p_a = 0.8;
 | 
			
		||||
    double p_b = 0.5;
 | 
			
		||||
    double p_c = p_a * p_b;
 | 
			
		||||
 | 
			
		||||
    int n_dists = 4;
 | 
			
		||||
    float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
 | 
			
		||||
    float (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
 | 
			
		||||
    double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
 | 
			
		||||
    double (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
 | 
			
		||||
 | 
			
		||||
    float result_one = sample_mixture(samplers, weights, n_dists, seed);
 | 
			
		||||
    double result_one = sample_mixture(samplers, weights, n_dists, seed);
 | 
			
		||||
		printf("result_one: %f\n", result_one);
 | 
			
		||||
		free(seed);
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
										
											Binary file not shown.
										
									
								
							| 
						 | 
				
			
			@ -4,22 +4,22 @@
 | 
			
		|||
#include "../../squiggle.h"
 | 
			
		||||
 | 
			
		||||
// Estimate functions
 | 
			
		||||
float sample_0(uint64_t* seed)
 | 
			
		||||
double sample_0(uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    return 0;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float sample_1(uint64_t* seed)
 | 
			
		||||
double sample_1(uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    return 1;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float sample_few(uint64_t* seed)
 | 
			
		||||
double sample_few(uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    return sample_to(1, 3, seed);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float sample_many(uint64_t* seed)
 | 
			
		||||
double sample_many(uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    return sample_to(2, 10, seed);
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -29,16 +29,16 @@ int main(){
 | 
			
		|||
		uint64_t* seed = malloc(sizeof(uint64_t));
 | 
			
		||||
		*seed = 1000; // xorshift can't start with 0
 | 
			
		||||
 | 
			
		||||
    float p_a = 0.8;
 | 
			
		||||
    float p_b = 0.5;
 | 
			
		||||
    float p_c = p_a * p_b;
 | 
			
		||||
    double p_a = 0.8;
 | 
			
		||||
    double p_b = 0.5;
 | 
			
		||||
    double p_c = p_a * p_b;
 | 
			
		||||
 | 
			
		||||
    int n_dists = 4;
 | 
			
		||||
    float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
 | 
			
		||||
    float (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
 | 
			
		||||
    double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
 | 
			
		||||
    double (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
 | 
			
		||||
 | 
			
		||||
		int n_samples = 1000000;
 | 
			
		||||
		float* result_many = (float *) malloc(n_samples * sizeof(float));
 | 
			
		||||
		double* result_many = (double *) malloc(n_samples * sizeof(double));
 | 
			
		||||
		for(int i=0; i<n_samples; i++){
 | 
			
		||||
      result_many[i] = sample_mixture(samplers, weights, n_dists, seed);
 | 
			
		||||
		}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
										
											Binary file not shown.
										
									
								
							| 
						 | 
				
			
			@ -8,22 +8,22 @@ int main(){
 | 
			
		|||
		uint64_t* seed = malloc(sizeof(uint64_t));
 | 
			
		||||
		*seed = 1000; // xorshift can't start with 0
 | 
			
		||||
 | 
			
		||||
    float p_a = 0.8;
 | 
			
		||||
    float p_b = 0.5;
 | 
			
		||||
    float p_c = p_a * p_b;
 | 
			
		||||
    double p_a = 0.8;
 | 
			
		||||
    double p_b = 0.5;
 | 
			
		||||
    double p_c = p_a * p_b;
 | 
			
		||||
 | 
			
		||||
    int n_dists = 4;
 | 
			
		||||
		
 | 
			
		||||
		float sample_0(uint64_t* seed){ return 0; }
 | 
			
		||||
		float sample_1(uint64_t* seed) { return 1; }
 | 
			
		||||
		float sample_few(uint64_t* seed){ return sample_to(1, 3, seed); }
 | 
			
		||||
		float sample_many(uint64_t* seed){ return sample_to(2, 10, seed); } 
 | 
			
		||||
		double sample_0(uint64_t* seed){ return 0; }
 | 
			
		||||
		double sample_1(uint64_t* seed) { return 1; }
 | 
			
		||||
		double sample_few(uint64_t* seed){ return sample_to(1, 3, seed); }
 | 
			
		||||
		double sample_many(uint64_t* seed){ return sample_to(2, 10, seed); } 
 | 
			
		||||
		
 | 
			
		||||
    float (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
 | 
			
		||||
		float weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
 | 
			
		||||
    double (*samplers[])(uint64_t*) = { sample_0, sample_1, sample_few, sample_many };
 | 
			
		||||
		double weights[] = { 1 - p_c, p_c / 2, p_c / 4, p_c / 4 };
 | 
			
		||||
 | 
			
		||||
		int n_samples = 1000000;
 | 
			
		||||
		float* result_many = (float *) malloc(n_samples * sizeof(float));
 | 
			
		||||
		double* result_many = (double *) malloc(n_samples * sizeof(double));
 | 
			
		||||
		for(int i=0; i<n_samples; i++){
 | 
			
		||||
      result_many[i] = sample_mixture(samplers, weights, n_dists, seed);
 | 
			
		||||
		}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
										
											Binary file not shown.
										
									
								
							| 
						 | 
				
			
			@ -8,7 +8,7 @@
 | 
			
		|||
#define NUM_SAMPLES 1000000
 | 
			
		||||
 | 
			
		||||
// Example cdf
 | 
			
		||||
float cdf_uniform_0_1(float x)
 | 
			
		||||
double cdf_uniform_0_1(double x)
 | 
			
		||||
{
 | 
			
		||||
    if (x < 0) {
 | 
			
		||||
        return 0;
 | 
			
		||||
| 
						 | 
				
			
			@ -19,7 +19,7 @@ float cdf_uniform_0_1(float x)
 | 
			
		|||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float cdf_squared_0_1(float x)
 | 
			
		||||
double cdf_squared_0_1(double x)
 | 
			
		||||
{
 | 
			
		||||
    if (x < 0) {
 | 
			
		||||
        return 0;
 | 
			
		||||
| 
						 | 
				
			
			@ -30,17 +30,17 @@ float cdf_squared_0_1(float x)
 | 
			
		|||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float cdf_normal_0_1(float x)
 | 
			
		||||
double cdf_normal_0_1(double x)
 | 
			
		||||
{
 | 
			
		||||
    float mean = 0;
 | 
			
		||||
    float std = 1;
 | 
			
		||||
    double mean = 0;
 | 
			
		||||
    double std = 1;
 | 
			
		||||
    return 0.5 * (1 + erf((x - mean) / (std * sqrt(2)))); // erf from math.h
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Some testers
 | 
			
		||||
void test_inverse_cdf_float(char* cdf_name, float cdf_float(float))
 | 
			
		||||
void test_inverse_cdf_double(char* cdf_name, double cdf_double(double))
 | 
			
		||||
{
 | 
			
		||||
    struct box result = inverse_cdf_float(cdf_float, 0.5);
 | 
			
		||||
    struct box result = inverse_cdf_double(cdf_double, 0.5);
 | 
			
		||||
    if (result.empty) {
 | 
			
		||||
        printf("Inverse for %s not calculated\n", cdf_name);
 | 
			
		||||
        exit(1);
 | 
			
		||||
| 
						 | 
				
			
			@ -49,12 +49,12 @@ void test_inverse_cdf_float(char* cdf_name, float cdf_float(float))
 | 
			
		|||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void test_and_time_sampler_float(char* cdf_name, float cdf_float(float), uint64_t* seed)
 | 
			
		||||
void test_and_time_sampler_double(char* cdf_name, double cdf_double(double), uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    printf("\nGetting some samples from %s:\n", cdf_name);
 | 
			
		||||
    clock_t begin = clock();
 | 
			
		||||
    for (int i = 0; i < NUM_SAMPLES; i++) {
 | 
			
		||||
        struct box sample = sampler_cdf_float(cdf_float, seed);
 | 
			
		||||
        struct box sample = sampler_cdf_double(cdf_double, seed);
 | 
			
		||||
        if (sample.empty) {
 | 
			
		||||
            printf("Error in sampler function for %s", cdf_name);
 | 
			
		||||
        } else {
 | 
			
		||||
| 
						 | 
				
			
			@ -62,26 +62,26 @@ void test_and_time_sampler_float(char* cdf_name, float cdf_float(float), uint64_
 | 
			
		|||
        }
 | 
			
		||||
    }
 | 
			
		||||
    clock_t end = clock();
 | 
			
		||||
    float time_spent = (float)(end - begin) / CLOCKS_PER_SEC;
 | 
			
		||||
    double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 | 
			
		||||
    printf("Time spent: %f\n", time_spent);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
int main()
 | 
			
		||||
{
 | 
			
		||||
    // Test inverse cdf float
 | 
			
		||||
    test_inverse_cdf_float("cdf_uniform_0_1", cdf_uniform_0_1);
 | 
			
		||||
    test_inverse_cdf_float("cdf_squared_0_1", cdf_squared_0_1);
 | 
			
		||||
    test_inverse_cdf_float("cdf_normal_0_1", cdf_normal_0_1);
 | 
			
		||||
    // Test inverse cdf double
 | 
			
		||||
    test_inverse_cdf_double("cdf_uniform_0_1", cdf_uniform_0_1);
 | 
			
		||||
    test_inverse_cdf_double("cdf_squared_0_1", cdf_squared_0_1);
 | 
			
		||||
    test_inverse_cdf_double("cdf_normal_0_1", cdf_normal_0_1);
 | 
			
		||||
 | 
			
		||||
    // Testing samplers
 | 
			
		||||
    // set randomness seed
 | 
			
		||||
    uint64_t* seed = malloc(sizeof(uint64_t));
 | 
			
		||||
    *seed = 1000; // xorshift can't start with 0
 | 
			
		||||
 | 
			
		||||
    // Test float sampler
 | 
			
		||||
    test_and_time_sampler_float("cdf_uniform_0_1", cdf_uniform_0_1, seed);
 | 
			
		||||
    test_and_time_sampler_float("cdf_squared_0_1", cdf_squared_0_1, seed);
 | 
			
		||||
    test_and_time_sampler_float("cdf_normal_0_1", cdf_normal_0_1, seed);
 | 
			
		||||
    // Test double sampler
 | 
			
		||||
    test_and_time_sampler_double("cdf_uniform_0_1", cdf_uniform_0_1, seed);
 | 
			
		||||
    test_and_time_sampler_double("cdf_squared_0_1", cdf_squared_0_1, seed);
 | 
			
		||||
    test_and_time_sampler_double("cdf_normal_0_1", cdf_normal_0_1, seed);
 | 
			
		||||
 | 
			
		||||
    // Get some normal samples using a previous approach
 | 
			
		||||
    printf("\nGetting some samples from sample_unit_normal\n");
 | 
			
		||||
| 
						 | 
				
			
			@ -89,12 +89,12 @@ int main()
 | 
			
		|||
    clock_t begin_2 = clock();
 | 
			
		||||
 | 
			
		||||
    for (int i = 0; i < NUM_SAMPLES; i++) {
 | 
			
		||||
        float normal_sample = sample_unit_normal(seed);
 | 
			
		||||
        double normal_sample = sample_unit_normal(seed);
 | 
			
		||||
        // printf("%f\n", normal_sample);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    clock_t end_2 = clock();
 | 
			
		||||
    float time_spent_2 = (float)(end_2 - begin_2) / CLOCKS_PER_SEC;
 | 
			
		||||
    double time_spent_2 = (double)(end_2 - begin_2) / CLOCKS_PER_SEC;
 | 
			
		||||
    printf("Time spent: %f\n", time_spent_2);
 | 
			
		||||
 | 
			
		||||
    free(seed);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
										
											Binary file not shown.
										
									
								
							| 
						 | 
				
			
			@ -10,11 +10,11 @@
 | 
			
		|||
#define TINY_BETA 1.0e-30
 | 
			
		||||
 | 
			
		||||
// Incomplete beta function
 | 
			
		||||
struct box incbeta(float a, float b, float x)
 | 
			
		||||
struct box incbeta(double a, double b, double x)
 | 
			
		||||
{
 | 
			
		||||
    // Descended from <https://github.com/codeplea/incbeta/blob/master/incbeta.c>,
 | 
			
		||||
    // <https://codeplea.com/incomplete-beta-function-c>
 | 
			
		||||
    // but modified to return a box struct and floats instead of doubles.
 | 
			
		||||
    // but modified to return a box struct and doubles instead of doubles.
 | 
			
		||||
    // [ ] to do: add attribution in README
 | 
			
		||||
    // Original code under this license:
 | 
			
		||||
    /*
 | 
			
		||||
| 
						 | 
				
			
			@ -60,17 +60,17 @@ struct box incbeta(float a, float b, float x)
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    /*Find the first part before the continued fraction.*/
 | 
			
		||||
    const float lbeta_ab = lgamma(a) + lgamma(b) - lgamma(a + b);
 | 
			
		||||
    const float front = exp(log(x) * a + log(1.0 - x) * b - lbeta_ab) / a;
 | 
			
		||||
    const double lbeta_ab = lgamma(a) + lgamma(b) - lgamma(a + b);
 | 
			
		||||
    const double front = exp(log(x) * a + log(1.0 - x) * b - lbeta_ab) / a;
 | 
			
		||||
 | 
			
		||||
    /*Use Lentz's algorithm to evaluate the continued fraction.*/
 | 
			
		||||
    float f = 1.0, c = 1.0, d = 0.0;
 | 
			
		||||
    double f = 1.0, c = 1.0, d = 0.0;
 | 
			
		||||
 | 
			
		||||
    int i, m;
 | 
			
		||||
    for (i = 0; i <= 200; ++i) {
 | 
			
		||||
        m = i / 2;
 | 
			
		||||
 | 
			
		||||
        float numerator;
 | 
			
		||||
        double numerator;
 | 
			
		||||
        if (i == 0) {
 | 
			
		||||
            numerator = 1.0; /*First numerator is 1.0.*/
 | 
			
		||||
        } else if (i % 2 == 0) {
 | 
			
		||||
| 
						 | 
				
			
			@ -89,7 +89,7 @@ struct box incbeta(float a, float b, float x)
 | 
			
		|||
        if (fabs(c) < TINY_BETA)
 | 
			
		||||
            c = TINY_BETA;
 | 
			
		||||
 | 
			
		||||
        const float cd = c * d;
 | 
			
		||||
        const double cd = c * d;
 | 
			
		||||
        f *= cd;
 | 
			
		||||
 | 
			
		||||
        /*Check for stop.*/
 | 
			
		||||
| 
						 | 
				
			
			@ -105,7 +105,7 @@ struct box incbeta(float a, float b, float x)
 | 
			
		|||
    return PROCESS_ERROR("More loops needed, did not converge, in function incbeta");
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct box cdf_beta(float x)
 | 
			
		||||
struct box cdf_beta(double x)
 | 
			
		||||
{
 | 
			
		||||
    if (x < 0) {
 | 
			
		||||
        struct box result = { .empty = 0, .content = 0 };
 | 
			
		||||
| 
						 | 
				
			
			@ -114,13 +114,13 @@ struct box cdf_beta(float x)
 | 
			
		|||
        struct box result = { .empty = 0, .content = 1 };
 | 
			
		||||
        return result;
 | 
			
		||||
    } else {
 | 
			
		||||
        float successes = 1, failures = (2023 - 1945);
 | 
			
		||||
        double successes = 1, failures = (2023 - 1945);
 | 
			
		||||
        return incbeta(successes, failures, x);
 | 
			
		||||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Some testers
 | 
			
		||||
void test_inverse_cdf_box(char* cdf_name, struct box cdf_box(float))
 | 
			
		||||
void test_inverse_cdf_box(char* cdf_name, struct box cdf_box(double))
 | 
			
		||||
{
 | 
			
		||||
    struct box result = inverse_cdf_box(cdf_box, 0.5);
 | 
			
		||||
    if (result.empty) {
 | 
			
		||||
| 
						 | 
				
			
			@ -131,7 +131,7 @@ void test_inverse_cdf_box(char* cdf_name, struct box cdf_box(float))
 | 
			
		|||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void test_and_time_sampler_box(char* cdf_name, struct box cdf_box(float), uint64_t* seed)
 | 
			
		||||
void test_and_time_sampler_box(char* cdf_name, struct box cdf_box(double), uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    printf("\nGetting some samples from %s:\n", cdf_name);
 | 
			
		||||
    clock_t begin = clock();
 | 
			
		||||
| 
						 | 
				
			
			@ -144,7 +144,7 @@ void test_and_time_sampler_box(char* cdf_name, struct box cdf_box(float), uint64
 | 
			
		|||
        }
 | 
			
		||||
    }
 | 
			
		||||
    clock_t end = clock();
 | 
			
		||||
    float time_spent = (float)(end - begin) / CLOCKS_PER_SEC;
 | 
			
		||||
    double time_spent = (double)(end - begin) / CLOCKS_PER_SEC;
 | 
			
		||||
    printf("Time spent: %f\n", time_spent);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
										
											Binary file not shown.
										
									
								
							| 
						 | 
				
			
			@ -14,15 +14,15 @@ int main()
 | 
			
		|||
    int n =  1000 * 1000;
 | 
			
		||||
		/*
 | 
			
		||||
		for (int i = 0; i < n; i++) {
 | 
			
		||||
        float gamma_0 = sample_gamma(0.0, seed);
 | 
			
		||||
        double gamma_0 = sample_gamma(0.0, seed);
 | 
			
		||||
        // printf("sample_gamma(0.0): %f\n", gamma_0);
 | 
			
		||||
    }
 | 
			
		||||
		printf("\n");
 | 
			
		||||
		*/
 | 
			
		||||
 | 
			
		||||
		float* gamma_1_array = malloc(sizeof(float) * n);
 | 
			
		||||
		double* gamma_1_array = malloc(sizeof(double) * n);
 | 
			
		||||
    for (int i = 0; i < n; i++) {
 | 
			
		||||
        float gamma_1 = sample_gamma(1.0, seed);
 | 
			
		||||
        double gamma_1 = sample_gamma(1.0, seed);
 | 
			
		||||
        // printf("sample_gamma(1.0): %f\n", gamma_1);
 | 
			
		||||
				gamma_1_array[i] = gamma_1;
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			@ -30,9 +30,9 @@ int main()
 | 
			
		|||
		free(gamma_1_array);
 | 
			
		||||
		printf("\n");
 | 
			
		||||
		
 | 
			
		||||
		float* beta_1_2_array = malloc(sizeof(float) * n);
 | 
			
		||||
		double* beta_1_2_array = malloc(sizeof(double) * n);
 | 
			
		||||
		for (int i = 0; i < n; i++) {
 | 
			
		||||
        float beta_1_2 = sample_beta(1, 2.0, seed);
 | 
			
		||||
        double beta_1_2 = sample_beta(1, 2.0, seed);
 | 
			
		||||
        // printf("sample_beta(1.0, 2.0): %f\n", beta_1_2);
 | 
			
		||||
				beta_1_2_array[i] = beta_1_2;
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										116
									
								
								squiggle.c
									
									
									
									
									
								
							
							
						
						
									
										116
									
								
								squiggle.c
									
									
									
									
									
								
							| 
						 | 
				
			
			@ -1,4 +1,4 @@
 | 
			
		|||
#include <float.h>
 | 
			
		||||
#include <double.h>
 | 
			
		||||
#include <limits.h>
 | 
			
		||||
#include <math.h>
 | 
			
		||||
#include <stdint.h>
 | 
			
		||||
| 
						 | 
				
			
			@ -11,7 +11,7 @@
 | 
			
		|||
#define EXIT_ON_ERROR 0
 | 
			
		||||
#define PROCESS_ERROR(error_msg) process_error(error_msg, EXIT_ON_ERROR, __FILE__, __LINE__)
 | 
			
		||||
 | 
			
		||||
const float PI = 3.14159265358979323846; // M_PI in gcc gnu99
 | 
			
		||||
const double PI = 3.14159265358979323846; // M_PI in gcc gnu99
 | 
			
		||||
 | 
			
		||||
// Pseudo Random number generator
 | 
			
		||||
uint64_t xorshift32(uint32_t* seed)
 | 
			
		||||
| 
						 | 
				
			
			@ -44,58 +44,58 @@ uint64_t xorshift64(uint64_t* seed)
 | 
			
		|||
 | 
			
		||||
// Distribution & sampling functions
 | 
			
		||||
// Unit distributions
 | 
			
		||||
float sample_unit_uniform(uint64_t* seed)
 | 
			
		||||
double sample_unit_uniform(uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    // samples uniform from [0,1] interval.
 | 
			
		||||
    return ((float)xorshift64(seed)) / ((float)UINT64_MAX);
 | 
			
		||||
    return ((double)xorshift64(seed)) / ((double)UINT64_MAX);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float sample_unit_normal(uint64_t* seed)
 | 
			
		||||
double sample_unit_normal(uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    // See: <https://en.wikipedia.org/wiki/Box%E2%80%93Muller_transform>
 | 
			
		||||
    float u1 = sample_unit_uniform(seed);
 | 
			
		||||
    float u2 = sample_unit_uniform(seed);
 | 
			
		||||
    float z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
 | 
			
		||||
    double u1 = sample_unit_uniform(seed);
 | 
			
		||||
    double u2 = sample_unit_uniform(seed);
 | 
			
		||||
    double z = sqrtf(-2.0 * log(u1)) * sin(2 * PI * u2);
 | 
			
		||||
    return z;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Composite distributions
 | 
			
		||||
float sample_uniform(float start, float end, uint64_t* seed)
 | 
			
		||||
double sample_uniform(double start, double end, uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    return sample_unit_uniform(seed) * (end - start) + start;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float sample_normal(float mean, float sigma, uint64_t* seed)
 | 
			
		||||
double sample_normal(double mean, double sigma, uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    return (mean + sigma * sample_unit_normal(seed));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float sample_lognormal(float logmean, float logsigma, uint64_t* seed)
 | 
			
		||||
double sample_lognormal(double logmean, double logsigma, uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    return expf(sample_normal(logmean, logsigma, seed));
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float sample_to(float low, float high, uint64_t* seed)
 | 
			
		||||
double sample_to(double low, double high, uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    // Given a (positive) 90% confidence interval,
 | 
			
		||||
    // returns a sample from a lognormal
 | 
			
		||||
    // with a matching 90% c.i.
 | 
			
		||||
    const float NORMAL95CONFIDENCE = 1.6448536269514722;
 | 
			
		||||
    float loglow = logf(low);
 | 
			
		||||
    float loghigh = logf(high);
 | 
			
		||||
    float logmean = (loglow + loghigh) / 2;
 | 
			
		||||
    float logsigma = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE);
 | 
			
		||||
    const double NORMAL95CONFIDENCE = 1.6448536269514722;
 | 
			
		||||
    double loglow = logf(low);
 | 
			
		||||
    double loghigh = logf(high);
 | 
			
		||||
    double logmean = (loglow + loghigh) / 2;
 | 
			
		||||
    double logsigma = (loghigh - loglow) / (2.0 * NORMAL95CONFIDENCE);
 | 
			
		||||
    return sample_lognormal(logmean, logsigma, seed);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float sample_gamma(float alpha, uint64_t* seed)
 | 
			
		||||
double sample_gamma(double alpha, uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
 | 
			
		||||
    // A Simple Method for Generating Gamma Variables, Marsaglia and Wan Tsang, 2001
 | 
			
		||||
    // https://dl.acm.org/doi/pdf/10.1145/358407.358414
 | 
			
		||||
    // see also the references/ folder
 | 
			
		||||
    if (alpha >= 1) {
 | 
			
		||||
        float d, c, x, v, u;
 | 
			
		||||
        double d, c, x, v, u;
 | 
			
		||||
        d = alpha - 1.0 / 3.0;
 | 
			
		||||
        c = 1.0 / sqrt(9.0 * d);
 | 
			
		||||
        while (1) {
 | 
			
		||||
| 
						 | 
				
			
			@ -125,24 +125,24 @@ float sample_gamma(float alpha, uint64_t* seed)
 | 
			
		|||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float sample_beta(float a, float b, uint64_t* seed)
 | 
			
		||||
double sample_beta(double a, double b, uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    float gamma_a = sample_gamma(a, seed);
 | 
			
		||||
    float gamma_b = sample_gamma(b, seed);
 | 
			
		||||
    double gamma_a = sample_gamma(a, seed);
 | 
			
		||||
    double gamma_b = sample_gamma(b, seed);
 | 
			
		||||
    return gamma_a / (gamma_a + gamma_b);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
// Array helpers
 | 
			
		||||
float array_sum(float* array, int length)
 | 
			
		||||
double array_sum(double* array, int length)
 | 
			
		||||
{
 | 
			
		||||
    float sum = 0.0;
 | 
			
		||||
    double sum = 0.0;
 | 
			
		||||
    for (int i = 0; i < length; i++) {
 | 
			
		||||
        sum += array[i];
 | 
			
		||||
    }
 | 
			
		||||
    return sum;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void array_cumsum(float* array_to_sum, float* array_cumsummed, int length)
 | 
			
		||||
void array_cumsum(double* array_to_sum, double* array_cumsummed, int length)
 | 
			
		||||
{
 | 
			
		||||
    array_cumsummed[0] = array_to_sum[0];
 | 
			
		||||
    for (int i = 1; i < length; i++) {
 | 
			
		||||
| 
						 | 
				
			
			@ -150,16 +150,16 @@ void array_cumsum(float* array_to_sum, float* array_cumsummed, int length)
 | 
			
		|||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float array_mean(float* array, int length)
 | 
			
		||||
double array_mean(double* array, int length)
 | 
			
		||||
{
 | 
			
		||||
    float sum = array_sum(array, length);
 | 
			
		||||
    double sum = array_sum(array, length);
 | 
			
		||||
    return sum / length;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
float array_std(float* array, int length)
 | 
			
		||||
double array_std(double* array, int length)
 | 
			
		||||
{
 | 
			
		||||
    float mean = array_mean(array, length);
 | 
			
		||||
    float std = 0.0;
 | 
			
		||||
    double mean = array_mean(array, length);
 | 
			
		||||
    double std = 0.0;
 | 
			
		||||
    for (int i = 0; i < length; i++) {
 | 
			
		||||
        std += (array[i] - mean);
 | 
			
		||||
				std *= std;
 | 
			
		||||
| 
						 | 
				
			
			@ -169,20 +169,20 @@ float array_std(float* array, int length)
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
// Mixture function
 | 
			
		||||
float sample_mixture(float (*samplers[])(uint64_t*), float* weights, int n_dists, uint64_t* seed)
 | 
			
		||||
double sample_mixture(double (*samplers[])(uint64_t*), double* weights, int n_dists, uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    // You can see a simpler version of this function in the git history
 | 
			
		||||
    // or in C-02-better-algorithm-one-thread/
 | 
			
		||||
    float sum_weights = array_sum(weights, n_dists);
 | 
			
		||||
    float* cumsummed_normalized_weights = (float*)malloc(n_dists * sizeof(float));
 | 
			
		||||
    double sum_weights = array_sum(weights, n_dists);
 | 
			
		||||
    double* cumsummed_normalized_weights = (double*)malloc(n_dists * sizeof(double));
 | 
			
		||||
    cumsummed_normalized_weights[0] = weights[0] / sum_weights;
 | 
			
		||||
    for (int i = 1; i < n_dists; i++) {
 | 
			
		||||
        cumsummed_normalized_weights[i] = cumsummed_normalized_weights[i - 1] + weights[i] / sum_weights;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    float result;
 | 
			
		||||
    double result;
 | 
			
		||||
    int result_set_flag = 0;
 | 
			
		||||
    float p = sample_uniform(0, 1, seed);
 | 
			
		||||
    double p = sample_uniform(0, 1, seed);
 | 
			
		||||
    for (int k = 0; k < n_dists; k++) {
 | 
			
		||||
        if (p < cumsummed_normalized_weights[k]) {
 | 
			
		||||
            result = samplers[k](seed);
 | 
			
		||||
| 
						 | 
				
			
			@ -200,7 +200,7 @@ float sample_mixture(float (*samplers[])(uint64_t*), float* weights, int n_dists
 | 
			
		|||
// Sample from an arbitrary cdf
 | 
			
		||||
struct box {
 | 
			
		||||
    int empty;
 | 
			
		||||
    float content;
 | 
			
		||||
    double content;
 | 
			
		||||
    char* error_msg;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -219,13 +219,13 @@ struct box process_error(const char* error_msg, int should_exit, char* file, int
 | 
			
		|||
 | 
			
		||||
// Inverse cdf at point
 | 
			
		||||
// Two versions of this function:
 | 
			
		||||
//   - raw, dealing with cdfs that return floats
 | 
			
		||||
//     - input: cdf: float => float, p
 | 
			
		||||
//   - raw, dealing with cdfs that return doubles
 | 
			
		||||
//     - input: cdf: double => double, p
 | 
			
		||||
//     - output: Box(number|error)
 | 
			
		||||
//   - box, dealing with cdfs that return a box.
 | 
			
		||||
//     - input: cdf: float => Box(number|error), p
 | 
			
		||||
//     - input: cdf: double => Box(number|error), p
 | 
			
		||||
//     - output: Box(number|error)
 | 
			
		||||
struct box inverse_cdf_float(float cdf(float), float p)
 | 
			
		||||
struct box inverse_cdf_double(double cdf(double), double p)
 | 
			
		||||
{
 | 
			
		||||
    // given a cdf: [-Inf, Inf] => [0,1]
 | 
			
		||||
    // returns a box with either
 | 
			
		||||
| 
						 | 
				
			
			@ -233,8 +233,8 @@ struct box inverse_cdf_float(float cdf(float), float p)
 | 
			
		|||
    // or an error
 | 
			
		||||
    // if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
 | 
			
		||||
 | 
			
		||||
    float low = -1.0;
 | 
			
		||||
    float high = 1.0;
 | 
			
		||||
    double low = -1.0;
 | 
			
		||||
    double high = 1.0;
 | 
			
		||||
 | 
			
		||||
    // 1. Make sure that cdf(low) < p < cdf(high)
 | 
			
		||||
    int interval_found = 0;
 | 
			
		||||
| 
						 | 
				
			
			@ -260,14 +260,14 @@ struct box inverse_cdf_float(float cdf(float), float p)
 | 
			
		|||
        int convergence_condition = 0;
 | 
			
		||||
        int count = 0;
 | 
			
		||||
        while (!convergence_condition && (count < (INT_MAX / 2))) {
 | 
			
		||||
            float mid = (high + low) / 2;
 | 
			
		||||
            double mid = (high + low) / 2;
 | 
			
		||||
            int mid_not_new = (mid == low) || (mid == high);
 | 
			
		||||
            // float width = high - low;
 | 
			
		||||
            // double width = high - low;
 | 
			
		||||
            // if ((width < 1e-8) || mid_not_new){
 | 
			
		||||
            if (mid_not_new) {
 | 
			
		||||
                convergence_condition = 1;
 | 
			
		||||
            } else {
 | 
			
		||||
                float mid_sign = cdf(mid) - p;
 | 
			
		||||
                double mid_sign = cdf(mid) - p;
 | 
			
		||||
                if (mid_sign < 0) {
 | 
			
		||||
                    low = mid;
 | 
			
		||||
                } else if (mid_sign > 0) {
 | 
			
		||||
| 
						 | 
				
			
			@ -288,7 +288,7 @@ struct box inverse_cdf_float(float cdf(float), float p)
 | 
			
		|||
    }
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
struct box inverse_cdf_box(struct box cdf_box(float), float p)
 | 
			
		||||
struct box inverse_cdf_box(struct box cdf_box(double), double p)
 | 
			
		||||
{
 | 
			
		||||
    // given a cdf: [-Inf, Inf] => Box([0,1])
 | 
			
		||||
    // returns a box with either
 | 
			
		||||
| 
						 | 
				
			
			@ -296,8 +296,8 @@ struct box inverse_cdf_box(struct box cdf_box(float), float p)
 | 
			
		|||
    // or an error
 | 
			
		||||
    // if EXIT_ON_ERROR is set to 1, it exits instead of providing an error
 | 
			
		||||
 | 
			
		||||
    float low = -1.0;
 | 
			
		||||
    float high = 1.0;
 | 
			
		||||
    double low = -1.0;
 | 
			
		||||
    double high = 1.0;
 | 
			
		||||
 | 
			
		||||
    // 1. Make sure that cdf(low) < p < cdf(high)
 | 
			
		||||
    int interval_found = 0;
 | 
			
		||||
| 
						 | 
				
			
			@ -332,9 +332,9 @@ struct box inverse_cdf_box(struct box cdf_box(float), float p)
 | 
			
		|||
        int convergence_condition = 0;
 | 
			
		||||
        int count = 0;
 | 
			
		||||
        while (!convergence_condition && (count < (INT_MAX / 2))) {
 | 
			
		||||
            float mid = (high + low) / 2;
 | 
			
		||||
            double mid = (high + low) / 2;
 | 
			
		||||
            int mid_not_new = (mid == low) || (mid == high);
 | 
			
		||||
            // float width = high - low;
 | 
			
		||||
            // double width = high - low;
 | 
			
		||||
            if (mid_not_new) {
 | 
			
		||||
                // if ((width < 1e-8) || mid_not_new){
 | 
			
		||||
                convergence_condition = 1;
 | 
			
		||||
| 
						 | 
				
			
			@ -343,7 +343,7 @@ struct box inverse_cdf_box(struct box cdf_box(float), float p)
 | 
			
		|||
                if (cdf_mid.empty) {
 | 
			
		||||
                    return PROCESS_ERROR(cdf_mid.error_msg);
 | 
			
		||||
                }
 | 
			
		||||
                float mid_sign = cdf_mid.content - p;
 | 
			
		||||
                double mid_sign = cdf_mid.content - p;
 | 
			
		||||
                if (mid_sign < 0) {
 | 
			
		||||
                    low = mid;
 | 
			
		||||
                } else if (mid_sign > 0) {
 | 
			
		||||
| 
						 | 
				
			
			@ -365,23 +365,23 @@ struct box inverse_cdf_box(struct box cdf_box(float), float p)
 | 
			
		|||
}
 | 
			
		||||
 | 
			
		||||
// Sampler based on inverse cdf and randomness function
 | 
			
		||||
struct box sampler_cdf_box(struct box cdf(float), uint64_t* seed)
 | 
			
		||||
struct box sampler_cdf_box(struct box cdf(double), uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    float p = sample_unit_uniform(seed);
 | 
			
		||||
    double p = sample_unit_uniform(seed);
 | 
			
		||||
    struct box result = inverse_cdf_box(cdf, p);
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
struct box sampler_cdf_float(float cdf(float), uint64_t* seed)
 | 
			
		||||
struct box sampler_cdf_double(double cdf(double), uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    float p = sample_unit_uniform(seed);
 | 
			
		||||
    struct box result = inverse_cdf_float(cdf, p);
 | 
			
		||||
    double p = sample_unit_uniform(seed);
 | 
			
		||||
    struct box result = inverse_cdf_double(cdf, p);
 | 
			
		||||
    return result;
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
/* Could also define other variations, e.g.,
 | 
			
		||||
float sampler_danger(struct box cdf(float), uint64_t* seed)
 | 
			
		||||
double sampler_danger(struct box cdf(double), uint64_t* seed)
 | 
			
		||||
{
 | 
			
		||||
    float p = sample_unit_uniform(seed);
 | 
			
		||||
    double p = sample_unit_uniform(seed);
 | 
			
		||||
    struct box result = inverse_cdf_box(cdf, p);
 | 
			
		||||
		if(result.empty){
 | 
			
		||||
			exit(1);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										36
									
								
								squiggle.h
									
									
									
									
									
								
							
							
						
						
									
										36
									
								
								squiggle.h
									
									
									
									
									
								
							| 
						 | 
				
			
			@ -8,31 +8,31 @@
 | 
			
		|||
uint64_t xorshift64(uint64_t* seed);
 | 
			
		||||
 | 
			
		||||
// Basic distribution sampling functions
 | 
			
		||||
float sample_unit_uniform(uint64_t* seed);
 | 
			
		||||
float sample_unit_normal(uint64_t* seed);
 | 
			
		||||
double sample_unit_uniform(uint64_t* seed);
 | 
			
		||||
double sample_unit_normal(uint64_t* seed);
 | 
			
		||||
 | 
			
		||||
// Composite distribution sampling functions
 | 
			
		||||
float sample_uniform(float start, float end, uint64_t* seed);
 | 
			
		||||
float sample_normal(float mean, float sigma, uint64_t* seed);
 | 
			
		||||
float sample_lognormal(float logmean, float logsigma, uint64_t* seed);
 | 
			
		||||
float sample_to(float low, float high, uint64_t* seed);
 | 
			
		||||
double sample_uniform(double start, double end, uint64_t* seed);
 | 
			
		||||
double sample_normal(double mean, double sigma, uint64_t* seed);
 | 
			
		||||
double sample_lognormal(double logmean, double logsigma, uint64_t* seed);
 | 
			
		||||
double sample_to(double low, double high, uint64_t* seed);
 | 
			
		||||
 | 
			
		||||
float sample_gamma(float alpha, uint64_t* seed);
 | 
			
		||||
float sample_beta(float a, float b, uint64_t* seed);
 | 
			
		||||
double sample_gamma(double alpha, uint64_t* seed);
 | 
			
		||||
double sample_beta(double a, double b, uint64_t* seed);
 | 
			
		||||
 | 
			
		||||
// Array helpers
 | 
			
		||||
float array_sum(float* array, int length);
 | 
			
		||||
void array_cumsum(float* array_to_sum, float* array_cumsummed, int length);
 | 
			
		||||
float array_mean(float* array, int length);
 | 
			
		||||
float array_std(float* array, int length);
 | 
			
		||||
double array_sum(double* array, int length);
 | 
			
		||||
void array_cumsum(double* array_to_sum, double* array_cumsummed, int length);
 | 
			
		||||
double array_mean(double* array, int length);
 | 
			
		||||
double array_std(double* array, int length);
 | 
			
		||||
 | 
			
		||||
// Mixture function
 | 
			
		||||
float sample_mixture(float (*samplers[])(uint64_t*), float* weights, int n_dists, uint64_t* seed);
 | 
			
		||||
double sample_mixture(double (*samplers[])(uint64_t*), double* weights, int n_dists, uint64_t* seed);
 | 
			
		||||
 | 
			
		||||
// Box
 | 
			
		||||
struct box {
 | 
			
		||||
    int empty;
 | 
			
		||||
    float content;
 | 
			
		||||
    double content;
 | 
			
		||||
    char* error_msg;
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -43,11 +43,11 @@ struct box {
 | 
			
		|||
struct box process_error(const char* error_msg, int should_exit, char* file, int line);
 | 
			
		||||
 | 
			
		||||
// Inverse cdf
 | 
			
		||||
struct box inverse_cdf_float(float cdf(float), float p);
 | 
			
		||||
struct box inverse_cdf_box(struct box cdf_box(float), float p);
 | 
			
		||||
struct box inverse_cdf_double(double cdf(double), double p);
 | 
			
		||||
struct box inverse_cdf_box(struct box cdf_box(double), double p);
 | 
			
		||||
 | 
			
		||||
// Samplers from cdf
 | 
			
		||||
struct box sampler_cdf_float(float cdf(float), uint64_t* seed);
 | 
			
		||||
struct box sampler_cdf_box(struct box cdf(float), uint64_t* seed);
 | 
			
		||||
struct box sampler_cdf_double(double cdf(double), uint64_t* seed);
 | 
			
		||||
struct box sampler_cdf_box(struct box cdf(double), uint64_t* seed);
 | 
			
		||||
 | 
			
		||||
#endif
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										45
									
								
								test/test.c
									
									
									
									
									
								
							
							
						
						
									
										45
									
								
								test/test.c
									
									
									
									
									
								
							| 
						 | 
				
			
			@ -4,22 +4,22 @@
 | 
			
		|||
#include <stdlib.h>
 | 
			
		||||
#include <stdio.h>
 | 
			
		||||
 | 
			
		||||
#define N  1000 * 1000
 | 
			
		||||
#define N  100
 | 
			
		||||
 | 
			
		||||
void test_unit_uniform(uint64_t* seed){
 | 
			
		||||
	float* unit_uniform_array = malloc(sizeof(float) * N);
 | 
			
		||||
	double* unit_uniform_array = malloc(sizeof(double) * N);
 | 
			
		||||
	
 | 
			
		||||
	for(int i=0; i<N; i++){
 | 
			
		||||
		unit_uniform_array[i] = sample_unit_uniform(seed);
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	float mean = array_mean(unit_uniform_array, N);
 | 
			
		||||
	float expected_mean = 0.5;
 | 
			
		||||
	float delta_mean = mean - expected_mean;
 | 
			
		||||
	double mean = array_mean(unit_uniform_array, N);
 | 
			
		||||
	double expected_mean = 0.5;
 | 
			
		||||
	double delta_mean = mean - expected_mean;
 | 
			
		||||
 | 
			
		||||
	float std = array_std(unit_uniform_array, N);
 | 
			
		||||
	float expected_std = sqrt(1.0/12.0);
 | 
			
		||||
	float delta_std = std - expected_std;
 | 
			
		||||
	double std = array_std(unit_uniform_array, N);
 | 
			
		||||
	double expected_std = sqrt(1.0/12.0);
 | 
			
		||||
	double delta_std = std - expected_std;
 | 
			
		||||
	
 | 
			
		||||
	printf("Mean of unit uniform: %f, vs expected mean: %f, delta: %f\n", mean, expected_mean, delta_mean);
 | 
			
		||||
	printf("Std of unit uniform: %f, vs expected std: %f, delta: %f\n", std, expected_std, delta_std);
 | 
			
		||||
| 
						 | 
				
			
			@ -40,23 +40,22 @@ void test_unit_uniform(uint64_t* seed){
 | 
			
		|||
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
void test_uniform(float start, float end, uint64_t* seed){
 | 
			
		||||
	float* uniform_array = malloc(sizeof(float) * N);
 | 
			
		||||
void test_uniform(double start, double end, uint64_t* seed){
 | 
			
		||||
	double* uniform_array = malloc(sizeof(double) * N);
 | 
			
		||||
	
 | 
			
		||||
	for(int i=0; i<N; i++){
 | 
			
		||||
		uniform_array[i] = sample_uniform(start, end, seed);
 | 
			
		||||
	}
 | 
			
		||||
	
 | 
			
		||||
	float mean = array_mean(uniform_array, N);
 | 
			
		||||
	float expected_mean = (start + end) / 2; 
 | 
			
		||||
	float delta_mean = mean - expected_mean;
 | 
			
		||||
	double mean = array_mean(uniform_array, N);
 | 
			
		||||
	double expected_mean = (start + end) / 2; 
 | 
			
		||||
	double delta_mean = mean - expected_mean;
 | 
			
		||||
	
 | 
			
		||||
	float std = array_std(uniform_array, N);
 | 
			
		||||
	float expected_std = sqrt(1.0/12.0) * fabs(end-start);
 | 
			
		||||
	float delta_std = std - expected_std;
 | 
			
		||||
	double std = array_std(uniform_array, N);
 | 
			
		||||
	double expected_std = sqrt(1.0/12.0) * fabs(end-start);
 | 
			
		||||
	double delta_std = std - expected_std;
 | 
			
		||||
	
 | 
			
		||||
 | 
			
		||||
	float width = fabs(end - start);
 | 
			
		||||
	double width = fabs(end - start);
 | 
			
		||||
	if(fabs(delta_mean) > width * 1.0/1000.0){
 | 
			
		||||
		printf("[-] Mean test for [%.1f, %.1f] uniform NOT passed.\n", start, end);
 | 
			
		||||
		printf("Mean of [%.1f, %.1f] uniform: %f, vs expected mean: %f, delta: %f\n", start, end, mean, expected_mean, mean - expected_mean);
 | 
			
		||||
| 
						 | 
				
			
			@ -67,6 +66,10 @@ void test_uniform(float start, float end, uint64_t* seed){
 | 
			
		|||
	if(fabs(delta_std) > width * 1.0/1000.0){
 | 
			
		||||
		printf("[-] Std test for [%.1f, %.1f] uniform NOT passed.\n", start, end);
 | 
			
		||||
		printf("Std of [%.1f, %.1f] uniform: %f, vs expected std: %f, delta: %f\n", start, end, std, expected_std, std - expected_std);
 | 
			
		||||
		for(int i=0; i<N; i++){
 | 
			
		||||
 | 
			
		||||
			printf("%.1f, ", uniform_array[i]);
 | 
			
		||||
		}
 | 
			
		||||
	}else {
 | 
			
		||||
		printf("[x] Std test for unit uniform PASSED\n");
 | 
			
		||||
	}
 | 
			
		||||
| 
						 | 
				
			
			@ -81,9 +84,9 @@ int main(){
 | 
			
		|||
   
 | 
			
		||||
		test_unit_uniform(seed);
 | 
			
		||||
 | 
			
		||||
		for(int i=0; i<100; i++){
 | 
			
		||||
			float start = sample_uniform(-10, 10, seed);
 | 
			
		||||
			float end = sample_uniform(-10, 10, seed);
 | 
			
		||||
		for(int i=0; i<1; i++){
 | 
			
		||||
			double start = sample_uniform(-10, 10, seed);
 | 
			
		||||
			double end = sample_uniform(-10, 10, seed);
 | 
			
		||||
			if ( end > start){
 | 
			
		||||
				test_uniform(start, end, seed);
 | 
			
		||||
			}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
		Reference in New Issue
	
	Block a user