137 lines
4.6 KiB
JavaScript
137 lines
4.6 KiB
JavaScript
import React, { useState, useEffect } from "react";
|
|
import { findDistances, aggregatePaths } from "utility-tools";
|
|
|
|
import { Separator } from "./separator.js";
|
|
|
|
import { truncateValueForDisplay } from "../lib/truncateNums.js";
|
|
import { cutOffLongNames } from "../lib/stringManipulations.js";
|
|
import { getCoefficientOfVariation } from "../lib/coefficientOfVariation.js";
|
|
|
|
async function fullResultsTable({ listAfterMergeSort, links }) {
|
|
console.log("listAfterMergeSort", listAfterMergeSort);
|
|
console.log(links);
|
|
let pathsArray = await findDistances({
|
|
orderedList: listAfterMergeSort,
|
|
links: links,
|
|
});
|
|
let aggregatedPaths = await aggregatePaths({
|
|
pathsArray: pathsArray,
|
|
orderedList: listAfterMergeSort,
|
|
aggregationType: "mean",
|
|
// VERBOSE: false,
|
|
});
|
|
return aggregatedPaths;
|
|
}
|
|
|
|
function abridgeArrayAndDisplay(array) {
|
|
let newArray;
|
|
let formatForDisplay;
|
|
if (array.length > 10) {
|
|
newArray = array.slice(0, 9);
|
|
formatForDisplay = newArray.map((d) => truncateValueForDisplay(d));
|
|
formatForDisplay[9] = "...";
|
|
} else {
|
|
newArray = array;
|
|
formatForDisplay = newArray.map((d) => truncateValueForDisplay(d));
|
|
}
|
|
let result = JSON.stringify(formatForDisplay, null, 2).replaceAll(`"`, "");
|
|
return result;
|
|
}
|
|
|
|
function getRow(row, i) {
|
|
return (
|
|
<tr
|
|
className="border-b dark:bg-gray-800 dark:border-gray-700 odd:bg-white even:bg-gray-50 odd:dark:bg-gray-800 even:dark:bg-gray-700"
|
|
key={`row-display-${i}`}
|
|
>
|
|
<td className="px-6 py-4 pt-7">{i}</td>
|
|
<td className="px-6 py-4">{cutOffLongNames(row.name)}</td>
|
|
<td className="text-center px-6 py-4">
|
|
{abridgeArrayAndDisplay(row.arrayMeans)}
|
|
</td>
|
|
<td className="text-center px-6 py-4">
|
|
{truncateValueForDisplay(row.aggregatedMeans)}
|
|
</td>
|
|
<td className="text-center px-6 py-4">
|
|
{truncateValueForDisplay(getCoefficientOfVariation(row.arrayMeans))}
|
|
</td>
|
|
</tr>
|
|
);
|
|
}
|
|
|
|
function reactTableContents(tableContents) {
|
|
return tableContents.map((row, i) => getRow(row, i));
|
|
}
|
|
|
|
export function ResultsTable({ isListOrdered, listAfterMergeSort, links }) {
|
|
const [isTableComputed, setIsTableComputed] = useState(false);
|
|
const [tableContents, setTableContents] = useState([]);
|
|
|
|
useEffect(async () => {
|
|
if (isListOrdered && listAfterMergeSort.length > 0) {
|
|
// both comparisons aren't strictly necessary,
|
|
// but it bit me once, so I'm leaving it
|
|
let tableContentsResult = await fullResultsTable({
|
|
listAfterMergeSort,
|
|
links,
|
|
});
|
|
console.log(tableContentsResult);
|
|
setTableContents(tableContentsResult);
|
|
setIsTableComputed(true);
|
|
}
|
|
}, [isListOrdered, listAfterMergeSort, links]);
|
|
|
|
return !(isListOrdered && isTableComputed) ? (
|
|
""
|
|
) : (
|
|
<div>
|
|
<div>
|
|
<Separator />
|
|
<div className="relative overflow-x-auto shadow-md sm:rounded-lg mt-10">
|
|
<table className="w-full text-sm text-left text-gray-800 dark:text-gray-400">
|
|
<thead className=" text-xs text-gray-700 bg-gray-50 dark:bg-gray-700 dark:text-gray-400">
|
|
<tr>
|
|
<th scope="col" className="px-6 py-3">
|
|
Position
|
|
</th>
|
|
|
|
<th scope="col" className="px-6 py-3">
|
|
Element
|
|
</th>
|
|
|
|
<th scope="col" className="text-center px-6 py-3">
|
|
Possible relative values
|
|
</th>
|
|
|
|
<th scope="col" className="text-center px-6 py-3">
|
|
Aggregated Means*
|
|
</th>
|
|
<th scope="col" className="text-center px-6 py-3">
|
|
Coefficient of variation
|
|
</th>
|
|
</tr>
|
|
</thead>
|
|
<tbody>{reactTableContents(tableContents)}</tbody>
|
|
</table>
|
|
</div>
|
|
</div>
|
|
<div className="grid w-full place-items-center text-center ">
|
|
<p className="mt-8 max-w-5xl">
|
|
*This is the geometric mean of all means of paths if all elements are
|
|
either all positive or all negative, and the arithmetic mean
|
|
otherwise. Paths with a non-numeric mean (e.g., resulting from
|
|
dividing by a mean of 0) are ignored. For a principled aggregation
|
|
which is able to produce meaningfull 90% confidence intervals, see the{" "}
|
|
<a
|
|
href="https://github.com/quantified-uncertainty/utility-function-extractor/tree/master/packages/utility-tools"
|
|
target="_blank"
|
|
>
|
|
utility-tools package
|
|
</a>{" "}
|
|
in npm or Github
|
|
</p>
|
|
</div>
|
|
</div>
|
|
);
|
|
}
|