291 lines
9.4 KiB
Plaintext
291 lines
9.4 KiB
Plaintext
//TODO: multimodal, add interface, test somehow, track performance, refactor sampleSet, refactor ASTEvaluator.res.
|
|
type t = GenericDist_Types.genericDist
|
|
type error = GenericDist_Types.error
|
|
type toPointSetFn = t => result<PointSetTypes.pointSetDist, error>
|
|
type toSampleSetFn = t => result<SampleSetDist.t, error>
|
|
type scaleMultiplyFn = (t, float) => result<t, error>
|
|
type pointwiseAddFn = (t, t) => result<t, error>
|
|
let mapStringErrors = n => n->E.R2.errMap(r => Error(GenericDist_Types.Other(r)))
|
|
let sampleN = (t: t, n) =>
|
|
switch t {
|
|
| PointSet(r) => Ok(PointSetDist.sampleNRendered(n, r))
|
|
| Symbolic(r) => Ok(SymbolicDist.T.sampleN(n, r))
|
|
| SampleSet(r) => Ok(SampleSetDist.sampleN(r, n))
|
|
}
|
|
let toSampleSetDist = (t: t, n) => sampleN(t, n)->E.R.bind(SampleSetDist.make)->mapStringErrors
|
|
let mapStringErrors = n => n->E.R2.errMap(r => Error(GenericDist_Types.Other(r)))
|
|
|
|
let fromFloat = (f: float): t => Symbolic(SymbolicDist.Float.make(f))
|
|
|
|
let toString = (t: t) =>
|
|
switch t {
|
|
| PointSet(_) => "Point Set Distribution"
|
|
| Symbolic(r) => SymbolicDist.T.toString(r)
|
|
| SampleSet(_) => "Sample Set Distribution"
|
|
}
|
|
|
|
let normalize = (t: t): t =>
|
|
switch t {
|
|
| PointSet(r) => PointSet(PointSetDist.T.normalize(r))
|
|
| Symbolic(_) => t
|
|
| SampleSet(_) => t
|
|
}
|
|
|
|
let toFloatOperation = (
|
|
t,
|
|
~toPointSetFn: toPointSetFn,
|
|
~distToFloatOperation: Operation.distToFloatOperation,
|
|
) => {
|
|
let symbolicSolution = switch (t: t) {
|
|
| Symbolic(r) =>
|
|
switch SymbolicDist.T.operate(distToFloatOperation, r) {
|
|
| Ok(f) => Some(f)
|
|
| _ => None
|
|
}
|
|
| _ => None
|
|
}
|
|
|
|
switch symbolicSolution {
|
|
| Some(r) => Ok(r)
|
|
| None => toPointSetFn(t)->E.R2.fmap(PointSetDist.operate(distToFloatOperation))
|
|
}
|
|
}
|
|
|
|
//Todo: If it's a pointSet, but the xyPointLength is different from what it has, it should change.
|
|
// This is tricky because the case of discrete distributions.
|
|
// Also, change the outputXYPoints/pointSetDistLength details
|
|
let toPointSet = (
|
|
t,
|
|
~xyPointLength,
|
|
~sampleCount,
|
|
~xSelection: GenericDist_Types.Operation.pointsetXSelection=#ByWeight,
|
|
unit,
|
|
): result<PointSetTypes.pointSetDist, error> => {
|
|
switch (t: t) {
|
|
| PointSet(pointSet) => Ok(pointSet)
|
|
| Symbolic(r) => Ok(SymbolicDist.T.toPointSetDist(~xSelection, xyPointLength, r))
|
|
| SampleSet(r) =>
|
|
SampleSetDist.toPointSetDist2(
|
|
~samples=r,
|
|
~samplingInputs={
|
|
sampleCount: sampleCount,
|
|
outputXYPoints: xyPointLength,
|
|
pointSetDistLength: xyPointLength,
|
|
kernelWidth: None,
|
|
},
|
|
(),
|
|
)->mapStringErrors
|
|
}
|
|
}
|
|
|
|
/*
|
|
PointSetDist.toSparkline calls "downsampleEquallyOverX", which downsamples it to n=bucketCount.
|
|
It first needs a pointSetDist, so we convert to a pointSetDist. In this process we want the
|
|
xyPointLength to be a bit longer than the eventual toSparkline downsampling. I chose 3
|
|
fairly arbitrarily.
|
|
*/
|
|
let toSparkline = (t: t, ~sampleCount: int, ~bucketCount: int=20, unit): result<string, error> =>
|
|
t
|
|
->toPointSet(~xSelection=#Linear, ~xyPointLength=bucketCount * 3, ~sampleCount, ())
|
|
->E.R.bind(r =>
|
|
r->PointSetDist.toSparkline(bucketCount)->E.R2.errMap(r => Error(GenericDist_Types.Other(r)))
|
|
)
|
|
|
|
module Truncate = {
|
|
let trySymbolicSimplification = (leftCutoff, rightCutoff, t: t): option<t> =>
|
|
switch (leftCutoff, rightCutoff, t) {
|
|
| (None, None, _) => None
|
|
| (lc, rc, Symbolic(#Uniform(u))) if lc < rc =>
|
|
Some(Symbolic(#Uniform(SymbolicDist.Uniform.truncate(lc, rc, u))))
|
|
| _ => None
|
|
}
|
|
|
|
let run = (
|
|
t: t,
|
|
~toPointSetFn: toPointSetFn,
|
|
~leftCutoff=None: option<float>,
|
|
~rightCutoff=None: option<float>,
|
|
(),
|
|
): result<t, error> => {
|
|
let doesNotNeedCutoff = E.O.isNone(leftCutoff) && E.O.isNone(rightCutoff)
|
|
if doesNotNeedCutoff {
|
|
Ok(t)
|
|
} else {
|
|
switch trySymbolicSimplification(leftCutoff, rightCutoff, t) {
|
|
| Some(r) => Ok(r)
|
|
| None =>
|
|
toPointSetFn(t)->E.R2.fmap(t => {
|
|
GenericDist_Types.PointSet(PointSetDist.T.truncate(leftCutoff, rightCutoff, t))
|
|
})
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let truncate = Truncate.run
|
|
|
|
/* Given two random variables A and B, this returns the distribution
|
|
of a new variable that is the result of the operation on A and B.
|
|
For instance, normal(0, 1) + normal(1, 1) -> normal(1, 2).
|
|
In general, this is implemented via convolution.
|
|
|
|
TODO: It would be useful to be able to pass in a paramater to get this to run either with convolution or monte carlo.
|
|
*/
|
|
module AlgebraicCombination = {
|
|
let tryAnalyticalSimplification = (
|
|
arithmeticOperation: GenericDist_Types.Operation.arithmeticOperation,
|
|
t1: t,
|
|
t2: t,
|
|
): option<result<SymbolicDistTypes.symbolicDist, string>> =>
|
|
switch (arithmeticOperation, t1, t2) {
|
|
| (arithmeticOperation, Symbolic(d1), Symbolic(d2)) =>
|
|
switch SymbolicDist.T.tryAnalyticalSimplification(d1, d2, arithmeticOperation) {
|
|
| #AnalyticalSolution(symbolicDist) => Some(Ok(symbolicDist))
|
|
| #Error(er) => Some(Error(er))
|
|
| #NoSolution => None
|
|
}
|
|
| _ => None
|
|
}
|
|
|
|
let runConvolution = (
|
|
toPointSet: toPointSetFn,
|
|
arithmeticOperation: GenericDist_Types.Operation.arithmeticOperation,
|
|
t1: t,
|
|
t2: t,
|
|
) =>
|
|
E.R.merge(toPointSet(t1), toPointSet(t2))->E.R2.fmap(((a, b)) =>
|
|
PointSetDist.combineAlgebraically(arithmeticOperation, a, b)
|
|
)
|
|
|
|
let runMonteCarlo = (
|
|
toSampleSet: toSampleSetFn,
|
|
arithmeticOperation: GenericDist_Types.Operation.arithmeticOperation,
|
|
t1: t,
|
|
t2: t,
|
|
) => {
|
|
let arithmeticOperation = Operation.Algebraic.toFn(arithmeticOperation)
|
|
E.R.merge(toSampleSet(t1), toSampleSet(t2))->E.R.bind(((a, b)) => {
|
|
SampleSetDist.map2(~fn=arithmeticOperation, ~t1=a, ~t2=b)->mapStringErrors
|
|
})
|
|
}
|
|
|
|
//I'm (Ozzie) really just guessing here, very little idea what's best
|
|
let expectedConvolutionCost: t => int = x =>
|
|
switch x {
|
|
| Symbolic(#Float(_)) => 1
|
|
| Symbolic(_) => 1000
|
|
| PointSet(Discrete(m)) => m.xyShape->XYShape.T.length
|
|
| PointSet(Mixed(_)) => 1000
|
|
| PointSet(Continuous(_)) => 1000
|
|
| _ => 1000
|
|
}
|
|
|
|
let chooseConvolutionOrMonteCarlo = (t2: t, t1: t) =>
|
|
expectedConvolutionCost(t1) * expectedConvolutionCost(t2) > 10000
|
|
? #CalculateWithMonteCarlo
|
|
: #CalculateWithConvolution
|
|
|
|
let run = (
|
|
t1: t,
|
|
~toPointSetFn: toPointSetFn,
|
|
~toSampleSetFn: toSampleSetFn,
|
|
~arithmeticOperation,
|
|
~t2: t,
|
|
): result<t, error> => {
|
|
switch tryAnalyticalSimplification(arithmeticOperation, t1, t2) {
|
|
| Some(Ok(symbolicDist)) => Ok(Symbolic(symbolicDist))
|
|
| Some(Error(e)) => Error(Other(e))
|
|
| None =>
|
|
switch chooseConvolutionOrMonteCarlo(t1, t2) {
|
|
| #CalculateWithMonteCarlo => {
|
|
let sampleSetDist: result<SampleSetDist.t, error> = runMonteCarlo(
|
|
toSampleSetFn,
|
|
arithmeticOperation,
|
|
t1,
|
|
t2,
|
|
)
|
|
sampleSetDist->E.R2.fmap(r => GenericDist_Types.SampleSet(r))
|
|
}
|
|
| #CalculateWithConvolution =>
|
|
runConvolution(
|
|
toPointSetFn,
|
|
arithmeticOperation,
|
|
t1,
|
|
t2,
|
|
)->E.R2.fmap(r => GenericDist_Types.PointSet(r))
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
let algebraicCombination = AlgebraicCombination.run
|
|
|
|
//TODO: Add faster pointwiseCombine fn
|
|
let pointwiseCombination = (
|
|
t1: t,
|
|
~toPointSetFn: toPointSetFn,
|
|
~arithmeticOperation,
|
|
~t2: t,
|
|
): result<t, error> => {
|
|
E.R.merge(toPointSetFn(t1), toPointSetFn(t2))
|
|
->E.R2.fmap(((t1, t2)) =>
|
|
PointSetDist.combinePointwise(
|
|
GenericDist_Types.Operation.arithmeticToFn(arithmeticOperation),
|
|
t1,
|
|
t2,
|
|
)
|
|
)
|
|
->E.R2.fmap(r => GenericDist_Types.PointSet(r))
|
|
}
|
|
|
|
let pointwiseCombinationFloat = (
|
|
t: t,
|
|
~toPointSetFn: toPointSetFn,
|
|
~arithmeticOperation: GenericDist_Types.Operation.arithmeticOperation,
|
|
~float: float,
|
|
): result<t, error> => {
|
|
let m = switch arithmeticOperation {
|
|
| #Add | #Subtract => Error(GenericDist_Types.DistributionVerticalShiftIsInvalid)
|
|
| (#Multiply | #Divide | #Power | #Logarithm) as arithmeticOperation =>
|
|
toPointSetFn(t)->E.R2.fmap(t => {
|
|
//TODO: Move to PointSet codebase
|
|
let fn = (secondary, main) => Operation.Scale.toFn(arithmeticOperation, main, secondary)
|
|
let integralSumCacheFn = Operation.Scale.toIntegralSumCacheFn(arithmeticOperation)
|
|
let integralCacheFn = Operation.Scale.toIntegralCacheFn(arithmeticOperation)
|
|
PointSetDist.T.mapY(
|
|
~integralSumCacheFn=integralSumCacheFn(float),
|
|
~integralCacheFn=integralCacheFn(float),
|
|
~fn=fn(float),
|
|
t,
|
|
)
|
|
})
|
|
}
|
|
m->E.R2.fmap(r => GenericDist_Types.PointSet(r))
|
|
}
|
|
|
|
//Note: The result should always cumulatively sum to 1. This would be good to test.
|
|
//Note: If the inputs are not normalized, this will return poor results. The weights probably refer to the post-normalized forms. It would be good to apply a catch to this.
|
|
let mixture = (
|
|
values: array<(t, float)>,
|
|
~scaleMultiplyFn: scaleMultiplyFn,
|
|
~pointwiseAddFn: pointwiseAddFn,
|
|
) => {
|
|
if E.A.length(values) == 0 {
|
|
Error(GenericDist_Types.Other("mixture must have at least 1 element"))
|
|
} else {
|
|
let totalWeight = values->E.A2.fmap(E.Tuple2.second)->E.A.Floats.sum
|
|
let properlyWeightedValues =
|
|
values
|
|
->E.A2.fmap(((dist, weight)) => scaleMultiplyFn(dist, weight /. totalWeight))
|
|
->E.A.R.firstErrorOrOpen
|
|
properlyWeightedValues->E.R.bind(values => {
|
|
values
|
|
|> Js.Array.sliceFrom(1)
|
|
|> E.A.fold_left(
|
|
(acc, x) => E.R.bind(acc, acc => pointwiseAddFn(acc, x)),
|
|
Ok(E.A.unsafe_get(values, 0)),
|
|
)
|
|
})
|
|
}
|
|
}
|