216 lines
6.7 KiB
TypeScript
216 lines
6.7 KiB
TypeScript
import { expectErrorToBeBounded, testRun, SqValueTag } from "./TestHelpers";
|
|
import * as fc from "fast-check";
|
|
|
|
// Beware: float64Array makes it appear in an infinite loop.
|
|
let arrayGen = () =>
|
|
fc
|
|
.float64Array({
|
|
minLength: 10,
|
|
max: 999999999999999,
|
|
min: -999999999999999,
|
|
maxLength: 10000,
|
|
noDefaultInfinity: true,
|
|
noNaN: true,
|
|
})
|
|
.filter(
|
|
(xs_) => Math.min(...Array.from(xs_)) != Math.max(...Array.from(xs_))
|
|
);
|
|
|
|
let makeSampleSet = (samples: number[]) => {
|
|
let sampleList = samples.map((x) => x.toFixed(20)).join(",");
|
|
let result = testRun(`SampleSet.fromList([${sampleList}])`);
|
|
if (result.tag === SqValueTag.Distribution) {
|
|
return result.value;
|
|
} else {
|
|
fail("Expected to be distribution");
|
|
}
|
|
};
|
|
|
|
const env = { sampleCount: 10000, xyPointLength: 100 };
|
|
|
|
describe("cumulative density function", () => {
|
|
// We should fix this.
|
|
test.skip("'s codomain is bounded above", () => {
|
|
fc.assert(
|
|
fc.property(arrayGen(), fc.float(), (xs_, x) => {
|
|
let xs = Array.from(xs_);
|
|
// Should compute with squiggle strings once interpreter has `sample`
|
|
let result = makeSampleSet(xs);
|
|
let cdfValue = result.cdf(env, x).value;
|
|
let epsilon = 5e-7;
|
|
expect(cdfValue).toBeLessThanOrEqual(1 + epsilon);
|
|
})
|
|
);
|
|
});
|
|
|
|
test.skip("'s codomain is bounded below", () => {
|
|
fc.assert(
|
|
fc.property(arrayGen(), fc.float(), (xs_, x) => {
|
|
let xs = Array.from(xs_);
|
|
// Should compute with squiggle strings once interpreter has `sample`
|
|
let result = makeSampleSet(xs);
|
|
let cdfValue = result.cdf(env, x).value;
|
|
expect(cdfValue).toBeGreaterThanOrEqual(0);
|
|
})
|
|
);
|
|
});
|
|
|
|
// This may not be true due to KDE estimating there to be mass above the
|
|
// highest value. These tests fail
|
|
test.skip("at the highest number in the sample is close to 1", () => {
|
|
fc.assert(
|
|
fc.property(arrayGen(), (xs_) => {
|
|
let xs = Array.from(xs_);
|
|
let max = Math.max(...xs);
|
|
// Should compute with squiggle strings once interpreter has `sample`
|
|
let result = makeSampleSet(xs);
|
|
let cdfValue = result.cdf(env, max).value;
|
|
expect(cdfValue).toBeCloseTo(1.0, 2);
|
|
})
|
|
);
|
|
});
|
|
|
|
// I may simply be mistaken about the math here.
|
|
test.skip("at the lowest number in the distribution is within epsilon of 0", () => {
|
|
fc.assert(
|
|
fc.property(arrayGen(), (xs_) => {
|
|
let xs = Array.from(xs_);
|
|
let min = Math.min(...xs);
|
|
// Should compute with squiggle strings once interpreter has `sample`
|
|
let result = makeSampleSet(xs);
|
|
let cdfValue = result.cdf(env, min).value;
|
|
let max = Math.max(...xs);
|
|
let epsilon = 5e-3;
|
|
if (max - min < epsilon) {
|
|
expect(cdfValue).toBeGreaterThan(4 * epsilon);
|
|
} else {
|
|
expect(cdfValue).toBeLessThan(4 * epsilon);
|
|
}
|
|
})
|
|
);
|
|
});
|
|
|
|
// I believe this is true, but due to bugs can't get the test to pass.
|
|
test.skip("is <= 1 everywhere with equality when x is higher than the max", () => {
|
|
fc.assert(
|
|
fc.property(arrayGen(), fc.float(), (xs_, x) => {
|
|
let xs = Array.from(xs_);
|
|
let dist = makeSampleSet(xs);
|
|
let cdfValue = dist.cdf(env, x).value;
|
|
let max = Math.max(...xs);
|
|
if (x > max) {
|
|
let epsilon = (x - max) / x;
|
|
expect(cdfValue).toBeGreaterThan(1 * (1 - epsilon));
|
|
} else if (typeof cdfValue == "number") {
|
|
expect(Math.round(1e5 * cdfValue) / 1e5).toBeLessThanOrEqual(1);
|
|
} else {
|
|
fail();
|
|
}
|
|
})
|
|
);
|
|
});
|
|
|
|
test.skip("is non-negative everywhere with zero when x is lower than the min", () => {
|
|
fc.assert(
|
|
fc.property(arrayGen(), fc.float(), (xs_, x) => {
|
|
let xs = Array.from(xs_);
|
|
let dist = makeSampleSet(xs);
|
|
let cdfValue = dist.cdf(env, x).value;
|
|
expect(cdfValue).toBeGreaterThanOrEqual(0);
|
|
})
|
|
);
|
|
});
|
|
});
|
|
|
|
// I no longer believe this is true.
|
|
describe("probability density function", () => {
|
|
const env = { sampleCount: 1000, xyPointLength: 100 };
|
|
|
|
test.skip("assigns to the max at most the weight of the mean", () => {
|
|
fc.assert(
|
|
fc.property(arrayGen(), (xs_) => {
|
|
let xs = Array.from(xs_);
|
|
let max = Math.max(...xs);
|
|
let mean = xs.reduce((a, b) => a + b, 0.0) / xs.length;
|
|
// Should be from squiggleString once interpreter exposes sampleset
|
|
let dist = makeSampleSet(xs);
|
|
let pdfValueMean = dist.pdf(env, mean).value;
|
|
let pdfValueMax = dist.pdf(env, max).value;
|
|
if (typeof pdfValueMean == "number" && typeof pdfValueMax == "number") {
|
|
expect(pdfValueMax).toBeLessThanOrEqual(pdfValueMean);
|
|
} else {
|
|
expect(pdfValueMax).toEqual(pdfValueMean);
|
|
}
|
|
})
|
|
);
|
|
});
|
|
});
|
|
|
|
// // This should be true, but I can't get it to work.
|
|
describe("mean is mean", () => {
|
|
test.skip("when sampling twice as widely as the input", () => {
|
|
fc.assert(
|
|
fc.property(
|
|
fc.float64Array({ minLength: 10, maxLength: 100000 }),
|
|
(xs_) => {
|
|
let xs = Array.from(xs_);
|
|
let n = xs.length;
|
|
let dist = makeSampleSet(xs);
|
|
let myEnv = { sampleCount: 2 * n, xyPointLength: 4 * n };
|
|
let mean = dist.mean(myEnv);
|
|
if (typeof mean.value == "number") {
|
|
expectErrorToBeBounded(
|
|
mean.value,
|
|
xs.reduce((a, b) => a + b, 0.0) / n,
|
|
5e-1,
|
|
1
|
|
);
|
|
} else {
|
|
fail();
|
|
}
|
|
}
|
|
)
|
|
);
|
|
});
|
|
|
|
test.skip("when sampling half as widely as the input", () => {
|
|
fc.assert(
|
|
fc.property(
|
|
fc.float64Array({ minLength: 10, maxLength: 100000 }),
|
|
(xs_) => {
|
|
let xs = Array.from(xs_);
|
|
let n = xs.length;
|
|
let dist = makeSampleSet(xs);
|
|
let myEnv = { sampleCount: Math.floor(n / 2), xyPointLength: 4 * n };
|
|
let mean = dist.mean(myEnv);
|
|
if (typeof mean.value == "number") {
|
|
expectErrorToBeBounded(
|
|
mean.value,
|
|
xs.reduce((a, b) => a + b, 0.0) / n,
|
|
5e-1,
|
|
1
|
|
);
|
|
} else {
|
|
fail();
|
|
}
|
|
}
|
|
)
|
|
);
|
|
});
|
|
});
|
|
|
|
describe("fromSamples function", () => {
|
|
test.skip("gives a mean near the mean of the input", () => {
|
|
fc.assert(
|
|
fc.property(arrayGen(), (xs_) => {
|
|
let xs = Array.from(xs_);
|
|
let xsString = xs.toString();
|
|
let squiggleString = `x = fromSamples([${xsString}]); mean(x)`;
|
|
let squiggleResult = testRun(squiggleString);
|
|
let mean = xs.reduce((a, b) => a + b, 0.0) / xs.length;
|
|
expect(squiggleResult.value).toBeCloseTo(mean, 4);
|
|
})
|
|
);
|
|
});
|
|
});
|