416 lines
12 KiB
ReasonML
416 lines
12 KiB
ReasonML
open Jest;
|
|
open Expect;
|
|
|
|
let shape: DistTypes.xyShape = {xs: [|1., 4., 8.|], ys: [|8., 9., 2.|]};
|
|
|
|
// let makeTest = (~only=false, str, item1, item2) =>
|
|
// only
|
|
// ? Only.test(str, () =>
|
|
// expect(item1) |> toEqual(item2)
|
|
// )
|
|
// : test(str, () =>
|
|
// expect(item1) |> toEqual(item2)
|
|
// );
|
|
|
|
// let makeTestCloseEquality = (~only=false, str, item1, item2, ~digits) =>
|
|
// only
|
|
// ? Only.test(str, () =>
|
|
// expect(item1) |> toBeSoCloseTo(item2, ~digits)
|
|
// )
|
|
// : test(str, () =>
|
|
// expect(item1) |> toBeSoCloseTo(item2, ~digits)
|
|
// );
|
|
|
|
// describe("Shape", () => {
|
|
// describe("Continuous", () => {
|
|
// open Continuous;
|
|
// let continuous = make(`Linear, shape, None);
|
|
// makeTest("minX", T.minX(continuous), 1.0);
|
|
// makeTest("maxX", T.maxX(continuous), 8.0);
|
|
// makeTest(
|
|
// "mapY",
|
|
// T.mapY(r => r *. 2.0, continuous) |> getShape |> (r => r.ys),
|
|
// [|16., 18.0, 4.0|],
|
|
// );
|
|
// describe("xToY", () => {
|
|
// describe("when Linear", () => {
|
|
// makeTest(
|
|
// "at 4.0",
|
|
// T.xToY(4., continuous),
|
|
// {continuous: 9.0, discrete: 0.0},
|
|
// );
|
|
// // Note: This below is weird to me, I'm not sure if it's what we want really.
|
|
// makeTest(
|
|
// "at 0.0",
|
|
// T.xToY(0., continuous),
|
|
// {continuous: 8.0, discrete: 0.0},
|
|
// );
|
|
// makeTest(
|
|
// "at 5.0",
|
|
// T.xToY(5., continuous),
|
|
// {continuous: 7.25, discrete: 0.0},
|
|
// );
|
|
// makeTest(
|
|
// "at 10.0",
|
|
// T.xToY(10., continuous),
|
|
// {continuous: 2.0, discrete: 0.0},
|
|
// );
|
|
// });
|
|
// describe("when Stepwise", () => {
|
|
// let continuous = make(`Stepwise, shape, None);
|
|
// makeTest(
|
|
// "at 4.0",
|
|
// T.xToY(4., continuous),
|
|
// {continuous: 9.0, discrete: 0.0},
|
|
// );
|
|
// makeTest(
|
|
// "at 0.0",
|
|
// T.xToY(0., continuous),
|
|
// {continuous: 0.0, discrete: 0.0},
|
|
// );
|
|
// makeTest(
|
|
// "at 5.0",
|
|
// T.xToY(5., continuous),
|
|
// {continuous: 9.0, discrete: 0.0},
|
|
// );
|
|
// makeTest(
|
|
// "at 10.0",
|
|
// T.xToY(10., continuous),
|
|
// {continuous: 2.0, discrete: 0.0},
|
|
// );
|
|
// });
|
|
// });
|
|
// makeTest(
|
|
// "integral",
|
|
// T.Integral.get(~cache=None, continuous) |> getShape,
|
|
// {xs: [|1.0, 4.0, 8.0|], ys: [|0.0, 25.5, 47.5|]},
|
|
// );
|
|
// makeTest(
|
|
// "toLinear",
|
|
// {
|
|
// let continuous =
|
|
// make(`Stepwise, {xs: [|1., 4., 8.|], ys: [|0.1, 5., 1.0|]}, None);
|
|
// continuous |> toLinear |> E.O.fmap(getShape);
|
|
// },
|
|
// Some({
|
|
// xs: [|1.00007, 1.00007, 4.0, 4.00007, 8.0, 8.00007|],
|
|
// ys: [|0.0, 0.1, 0.1, 5.0, 5.0, 1.0|],
|
|
// }),
|
|
// );
|
|
// makeTest(
|
|
// "toLinear",
|
|
// {
|
|
// let continuous = make(`Stepwise, {xs: [|0.0|], ys: [|0.3|]}, None);
|
|
// continuous |> toLinear |> E.O.fmap(getShape);
|
|
// },
|
|
// Some({xs: [|0.0|], ys: [|0.3|]}),
|
|
// );
|
|
// makeTest(
|
|
// "integralXToY",
|
|
// T.Integral.xToY(~cache=None, 0.0, continuous),
|
|
// 0.0,
|
|
// );
|
|
// makeTest(
|
|
// "integralXToY",
|
|
// T.Integral.xToY(~cache=None, 2.0, continuous),
|
|
// 8.5,
|
|
// );
|
|
// makeTest(
|
|
// "integralXToY",
|
|
// T.Integral.xToY(~cache=None, 100.0, continuous),
|
|
// 47.5,
|
|
// );
|
|
// makeTest(
|
|
// "integralEndY",
|
|
// continuous
|
|
// |> T.normalize //scaleToIntegralSum(~intendedSum=1.0)
|
|
// |> T.Integral.sum(~cache=None),
|
|
// 1.0,
|
|
// );
|
|
// });
|
|
|
|
// describe("Discrete", () => {
|
|
// open Discrete;
|
|
// let shape: DistTypes.xyShape = {
|
|
// xs: [|1., 4., 8.|],
|
|
// ys: [|0.3, 0.5, 0.2|],
|
|
// };
|
|
// let discrete = make(shape, None);
|
|
// makeTest("minX", T.minX(discrete), 1.0);
|
|
// makeTest("maxX", T.maxX(discrete), 8.0);
|
|
// makeTest(
|
|
// "mapY",
|
|
// T.mapY(r => r *. 2.0, discrete) |> (r => getShape(r).ys),
|
|
// [|0.6, 1.0, 0.4|],
|
|
// );
|
|
// makeTest(
|
|
// "xToY at 4.0",
|
|
// T.xToY(4., discrete),
|
|
// {discrete: 0.5, continuous: 0.0},
|
|
// );
|
|
// makeTest(
|
|
// "xToY at 0.0",
|
|
// T.xToY(0., discrete),
|
|
// {discrete: 0.0, continuous: 0.0},
|
|
// );
|
|
// makeTest(
|
|
// "xToY at 5.0",
|
|
// T.xToY(5., discrete),
|
|
// {discrete: 0.0, continuous: 0.0},
|
|
// );
|
|
// makeTest(
|
|
// "scaleBy",
|
|
// scaleBy(~scale=4.0, discrete),
|
|
// make({xs: [|1., 4., 8.|], ys: [|1.2, 2.0, 0.8|]}, None),
|
|
// );
|
|
// makeTest(
|
|
// "normalize, then scale by 4.0",
|
|
// discrete
|
|
// |> T.normalize
|
|
// |> scaleBy(~scale=4.0),
|
|
// make({xs: [|1., 4., 8.|], ys: [|1.2, 2.0, 0.8|]}, None),
|
|
// );
|
|
// makeTest(
|
|
// "scaleToIntegralSum: back and forth",
|
|
// discrete
|
|
// |> T.normalize
|
|
// |> scaleBy(~scale=4.0)
|
|
// |> T.normalize,
|
|
// discrete,
|
|
// );
|
|
// makeTest(
|
|
// "integral",
|
|
// T.Integral.get(~cache=None, discrete),
|
|
// Continuous.make(
|
|
// `Stepwise,
|
|
// {xs: [|1., 4., 8.|], ys: [|0.3, 0.8, 1.0|]},
|
|
// None
|
|
// ),
|
|
// );
|
|
// makeTest(
|
|
// "integral with 1 element",
|
|
// T.Integral.get(~cache=None, Discrete.make({xs: [|0.0|], ys: [|1.0|]}, None)),
|
|
// Continuous.make(`Stepwise, {xs: [|0.0|], ys: [|1.0|]}, None),
|
|
// );
|
|
// makeTest(
|
|
// "integralXToY",
|
|
// T.Integral.xToY(~cache=None, 6.0, discrete),
|
|
// 0.9,
|
|
// );
|
|
// makeTest("integralEndY", T.Integral.sum(~cache=None, discrete), 1.0);
|
|
// makeTest("mean", T.mean(discrete), 3.9);
|
|
// makeTestCloseEquality(
|
|
// "variance",
|
|
// T.variance(discrete),
|
|
// 5.89,
|
|
// ~digits=7,
|
|
// );
|
|
// });
|
|
|
|
// describe("Mixed", () => {
|
|
// open Distributions.Mixed;
|
|
// let discreteShape: DistTypes.xyShape = {
|
|
// xs: [|1., 4., 8.|],
|
|
// ys: [|0.3, 0.5, 0.2|],
|
|
// };
|
|
// let discrete = Discrete.make(discreteShape, None);
|
|
// let continuous =
|
|
// Continuous.make(
|
|
// `Linear,
|
|
// {xs: [|3., 7., 14.|], ys: [|0.058, 0.082, 0.124|]},
|
|
// None
|
|
// )
|
|
// |> Continuous.T.normalize; //scaleToIntegralSum(~intendedSum=1.0);
|
|
// let mixed = Mixed.make(
|
|
// ~continuous,
|
|
// ~discrete,
|
|
// );
|
|
// makeTest("minX", T.minX(mixed), 1.0);
|
|
// makeTest("maxX", T.maxX(mixed), 14.0);
|
|
// makeTest(
|
|
// "mapY",
|
|
// T.mapY(r => r *. 2.0, mixed),
|
|
// Mixed.make(
|
|
// ~continuous=
|
|
// Continuous.make(
|
|
// `Linear,
|
|
// {
|
|
// xs: [|3., 7., 14.|],
|
|
// ys: [|
|
|
// 0.11588411588411589,
|
|
// 0.16383616383616384,
|
|
// 0.24775224775224775,
|
|
// |],
|
|
// },
|
|
// None
|
|
// ),
|
|
// ~discrete=Discrete.make({xs: [|1., 4., 8.|], ys: [|0.6, 1.0, 0.4|]}, None)
|
|
// ),
|
|
// );
|
|
// makeTest(
|
|
// "xToY at 4.0",
|
|
// T.xToY(4., mixed),
|
|
// {discrete: 0.25, continuous: 0.03196803196803197},
|
|
// );
|
|
// makeTest(
|
|
// "xToY at 0.0",
|
|
// T.xToY(0., mixed),
|
|
// {discrete: 0.0, continuous: 0.028971028971028972},
|
|
// );
|
|
// makeTest(
|
|
// "xToY at 5.0",
|
|
// T.xToY(7., mixed),
|
|
// {discrete: 0.0, continuous: 0.04095904095904096},
|
|
// );
|
|
// makeTest("integralEndY", T.Integral.sum(~cache=None, mixed), 1.0);
|
|
// makeTest(
|
|
// "scaleBy",
|
|
// Mixed.scaleBy(~scale=2.0, mixed),
|
|
// Mixed.make(
|
|
// ~continuous=
|
|
// Continuous.make(
|
|
// `Linear,
|
|
// {
|
|
// xs: [|3., 7., 14.|],
|
|
// ys: [|
|
|
// 0.11588411588411589,
|
|
// 0.16383616383616384,
|
|
// 0.24775224775224775,
|
|
// |],
|
|
// },
|
|
// None
|
|
// ),
|
|
// ~discrete=Discrete.make({xs: [|1., 4., 8.|], ys: [|0.6, 1.0, 0.4|]}, None),
|
|
// ),
|
|
// );
|
|
// makeTest(
|
|
// "integral",
|
|
// T.Integral.get(~cache=None, mixed),
|
|
// Continuous.make(
|
|
// `Linear,
|
|
// {
|
|
// xs: [|1.00007, 1.00007, 3., 4., 4.00007, 7., 8., 8.00007, 14.|],
|
|
// ys: [|
|
|
// 0.0,
|
|
// 0.0,
|
|
// 0.15,
|
|
// 0.18496503496503497,
|
|
// 0.4349674825174825,
|
|
// 0.5398601398601399,
|
|
// 0.5913086913086913,
|
|
// 0.6913122927072927,
|
|
// 1.0,
|
|
// |],
|
|
// },
|
|
// None,
|
|
// ),
|
|
// );
|
|
// });
|
|
|
|
// describe("Distplus", () => {
|
|
// open DistPlus;
|
|
// let discreteShape: DistTypes.xyShape = {
|
|
// xs: [|1., 4., 8.|],
|
|
// ys: [|0.3, 0.5, 0.2|],
|
|
// };
|
|
// let discrete = Discrete.make(discreteShape, None);
|
|
// let continuous =
|
|
// Continuous.make(
|
|
// `Linear,
|
|
// {xs: [|3., 7., 14.|], ys: [|0.058, 0.082, 0.124|]},
|
|
// None
|
|
// )
|
|
// |> Continuous.T.normalize; //scaleToIntegralSum(~intendedSum=1.0);
|
|
// let mixed =
|
|
// Mixed.make(
|
|
// ~continuous,
|
|
// ~discrete,
|
|
// );
|
|
// let distPlus =
|
|
// DistPlus.make(
|
|
// ~shape=Mixed(mixed),
|
|
// ~guesstimatorString=None,
|
|
// (),
|
|
// );
|
|
// makeTest("minX", T.minX(distPlus), 1.0);
|
|
// makeTest("maxX", T.maxX(distPlus), 14.0);
|
|
// makeTest(
|
|
// "xToY at 4.0",
|
|
// T.xToY(4., distPlus),
|
|
// {discrete: 0.25, continuous: 0.03196803196803197},
|
|
// );
|
|
// makeTest(
|
|
// "xToY at 0.0",
|
|
// T.xToY(0., distPlus),
|
|
// {discrete: 0.0, continuous: 0.028971028971028972},
|
|
// );
|
|
// makeTest(
|
|
// "xToY at 5.0",
|
|
// T.xToY(7., distPlus),
|
|
// {discrete: 0.0, continuous: 0.04095904095904096},
|
|
// );
|
|
// makeTest("integralEndY", T.Integral.sum(~cache=None, distPlus), 1.0);
|
|
// makeTest(
|
|
// "integral",
|
|
// T.Integral.get(~cache=None, distPlus) |> T.toContinuous,
|
|
// Some(
|
|
// Continuous.make(
|
|
// `Linear,
|
|
// {
|
|
// xs: [|1.00007, 1.00007, 3., 4., 4.00007, 7., 8., 8.00007, 14.|],
|
|
// ys: [|
|
|
// 0.0,
|
|
// 0.0,
|
|
// 0.15,
|
|
// 0.18496503496503497,
|
|
// 0.4349674825174825,
|
|
// 0.5398601398601399,
|
|
// 0.5913086913086913,
|
|
// 0.6913122927072927,
|
|
// 1.0,
|
|
// |],
|
|
// },
|
|
// None,
|
|
// ),
|
|
// ),
|
|
// );
|
|
// });
|
|
|
|
// describe("Shape", () => {
|
|
// let mean = 10.0;
|
|
// let stdev = 4.0;
|
|
// let variance = stdev ** 2.0;
|
|
// let numSamples = 10000;
|
|
// open Distributions.Shape;
|
|
// let normal: SymbolicTypes.symbolicDist = `Normal({mean, stdev});
|
|
// let normalShape = ExpressionTree.toShape(numSamples, `SymbolicDist(normal));
|
|
// let lognormal = SymbolicDist.Lognormal.fromMeanAndStdev(mean, stdev);
|
|
// let lognormalShape = ExpressionTree.toShape(numSamples, `SymbolicDist(lognormal));
|
|
|
|
// makeTestCloseEquality(
|
|
// "Mean of a normal",
|
|
// T.mean(normalShape),
|
|
// mean,
|
|
// ~digits=2,
|
|
// );
|
|
// makeTestCloseEquality(
|
|
// "Variance of a normal",
|
|
// T.variance(normalShape),
|
|
// variance,
|
|
// ~digits=1,
|
|
// );
|
|
// makeTestCloseEquality(
|
|
// "Mean of a lognormal",
|
|
// T.mean(lognormalShape),
|
|
// mean,
|
|
// ~digits=2,
|
|
// );
|
|
// makeTestCloseEquality(
|
|
// "Variance of a lognormal",
|
|
// T.variance(lognormalShape),
|
|
// variance,
|
|
// ~digits=0,
|
|
// );
|
|
// });
|
|
// });
|