676 lines
25 KiB
Plaintext
676 lines
25 KiB
Plaintext
open FunctionRegistry_Core
|
|
open FunctionRegistry_Helpers
|
|
|
|
let nameSpace = "Danger"
|
|
let requiresNamespace = true
|
|
|
|
module NNumbersToNumber = {
|
|
module One = {
|
|
let make = (name, fn) =>
|
|
FnDefinition.make(
|
|
~name,
|
|
~inputs=[FRTypeNumber],
|
|
~run=(_, inputs, _, _) => {
|
|
inputs
|
|
->getOrError(0)
|
|
->E.R.bind(Prepare.oneNumber)
|
|
->E.R2.fmap(fn)
|
|
->E.R2.fmap(Wrappers.evNumber)
|
|
},
|
|
(),
|
|
)
|
|
}
|
|
|
|
module Two = {
|
|
let make = (name, fn) =>
|
|
FnDefinition.make(
|
|
~name,
|
|
~inputs=[FRTypeNumber, FRTypeNumber],
|
|
~run=(_, inputs, _, _) => {
|
|
inputs->Prepare.ToValueTuple.twoNumbers->E.R2.fmap(fn)->E.R2.fmap(Wrappers.evNumber)
|
|
},
|
|
(),
|
|
)
|
|
}
|
|
|
|
module Three = {
|
|
let make = (name, fn) =>
|
|
FnDefinition.make(
|
|
~name,
|
|
~inputs=[FRTypeNumber, FRTypeNumber, FRTypeNumber],
|
|
~run=(_, inputs, _, _) => {
|
|
inputs->Prepare.ToValueTuple.threeNumbers->E.R2.fmap(fn)->E.R2.fmap(Wrappers.evNumber)
|
|
},
|
|
(),
|
|
)
|
|
}
|
|
}
|
|
|
|
module Internals = {
|
|
// Probability functions
|
|
let factorial = Stdlib.Math.factorial
|
|
let choose = ((n, k)) => factorial(n) /. (factorial(n -. k) *. factorial(k))
|
|
let pow = (base, exp) => Js.Math.pow_float(~base, ~exp)
|
|
let binomial = ((n, k, p)) => choose((n, k)) *. pow(p, k) *. pow(1.0 -. p, n -. k)
|
|
|
|
// Integral helper functions
|
|
let applyFunctionAtPoint = (
|
|
aLambda,
|
|
internalNumber: internalExpressionValue,
|
|
environment,
|
|
reducer,
|
|
): result<ReducerInterface_InternalExpressionValue.t, Reducer_ErrorValue.errorValue> => {
|
|
let result = Reducer_Expression_Lambda.doLambdaCall(
|
|
aLambda,
|
|
list{internalNumber},
|
|
environment,
|
|
reducer,
|
|
)
|
|
result
|
|
}
|
|
let castFloatToInternalNumber = x => ReducerInterface_InternalExpressionValue.IEvNumber(x)
|
|
let castArrayOfFloatsToInternalArrayOfInternals = xs => ReducerInterface_InternalExpressionValue.IEvArray(
|
|
Belt.Array.map(xs, x => castFloatToInternalNumber(x)),
|
|
)
|
|
@dead
|
|
let applyFunctionAtFloat = (aLambda, point, environment, reducer) =>
|
|
// reason for existence: might be an useful template to have for calculating diminishing marginal returns later on
|
|
applyFunctionAtPoint(aLambda, castFloatToInternalNumber(point), environment, reducer)
|
|
// integrate function itself
|
|
let integrateFunctionBetweenWithNumIntegrationPoints = (
|
|
aLambda,
|
|
min: float,
|
|
max: float,
|
|
numIntegrationPoints: float, // cast as int?
|
|
environment,
|
|
reducer,
|
|
) => {
|
|
let applyFunctionAtFloatToFloatOption = (point: float) => {
|
|
// Defined here so that it has access to environment, reducer
|
|
let pointAsInternalExpression = castFloatToInternalNumber(point)
|
|
let resultAsInternalExpression = Reducer_Expression_Lambda.doLambdaCall(
|
|
aLambda,
|
|
list{pointAsInternalExpression},
|
|
environment,
|
|
reducer,
|
|
)
|
|
let result = switch resultAsInternalExpression {
|
|
| Ok(IEvNumber(x)) => Ok(x)
|
|
| Error(_) =>
|
|
Error(
|
|
"Error 1 in Danger.integrate. It's possible that your function doesn't return a number, try definining auxiliaryFunction(x) = mean(yourFunction(x)) and integrate auxiliaryFunction instead",
|
|
)
|
|
| _ => Error("Error 2 in Danger.integrate")
|
|
}
|
|
result
|
|
}
|
|
// worked example in comments below, assuming min=0, max = 10
|
|
let numTotalPoints = Belt.Float.toInt(numIntegrationPoints) // superflous declaration, but useful to keep track that we are interpreting "numIntegrationPoints" as the total number on which we evaluate the function, not e.g., as the inner integration points.
|
|
let numInnerPoints = numTotalPoints - 2
|
|
let numOuterPoints = 2
|
|
let totalWeight = max -. min
|
|
let weightForAnInnerPoint = totalWeight /. E.I.toFloat(numTotalPoints - 1)
|
|
let weightForAnOuterPoint = totalWeight /. E.I.toFloat(numTotalPoints - 1) /. 2.0
|
|
let innerPointIncrement = (max -. min) /. E.I.toFloat(numTotalPoints - 1)
|
|
let innerXs = Belt.Array.makeBy(numInnerPoints, i =>
|
|
min +. Belt_Float.fromInt(i + 1) *. innerPointIncrement
|
|
)
|
|
// Gotcha: makeBy goes from 0 to (n-1): <https://rescript-lang.org/docs/manual/latest/api/belt/array#makeby>
|
|
let ysOptions = Belt.Array.map(innerXs, x => applyFunctionAtFloatToFloatOption(x))
|
|
let okYs = E.A.R.filterOk(ysOptions)
|
|
|
|
/* Logging, with a worked example. */
|
|
// Useful for understanding what is happening.
|
|
// assuming min = 0, max = 10, numTotalPoints=10, results below:
|
|
let verbose = false
|
|
if verbose {
|
|
Js.Console.log2("numTotalPoints", numTotalPoints) // 5
|
|
Js.Console.log2("numInnerPoints", numInnerPoints) // 3
|
|
Js.Console.log2("numOuterPoints", numOuterPoints) // always 2
|
|
Js.Console.log2("totalWeight", totalWeight) // 10 - 0 = 10
|
|
Js.Console.log2("weightForAnInnerPoint", weightForAnInnerPoint) // 10/4 = 2.5
|
|
Js.Console.log2("weightForAnOuterPoint", weightForAnOuterPoint) // 10/4/2 = 1.25
|
|
Js.Console.log2(
|
|
"weightForAnInnerPoint * numInnerPoints + weightForAnOuterPoint * numOuterPoints",
|
|
weightForAnInnerPoint *. E.I.toFloat(numInnerPoints) +.
|
|
weightForAnOuterPoint *. E.I.toFloat(numOuterPoints),
|
|
) // should be 10
|
|
Js.Console.log2(
|
|
"sum of weights == totalWeight",
|
|
weightForAnInnerPoint *. E.I.toFloat(numInnerPoints) +.
|
|
weightForAnOuterPoint *. E.I.toFloat(numOuterPoints) == totalWeight,
|
|
) // true
|
|
Js.Console.log2("innerPointIncrement", innerPointIncrement) // (10-0)/4 = 2.5
|
|
Js.Console.log2("innerXs", innerXs) // 2.5, 5, 7.5
|
|
Js.Console.log2("ysOptions", ysOptions)
|
|
Js.Console.log2("okYs", okYs)
|
|
}
|
|
|
|
let result = switch E.A.length(ysOptions) == E.A.length(okYs) {
|
|
| true => {
|
|
let innerPointsSum = okYs->E.A.reduce(0.0, (a, b) => a +. b)
|
|
let resultWithOuterPoints = switch (
|
|
applyFunctionAtFloatToFloatOption(min),
|
|
applyFunctionAtFloatToFloatOption(max),
|
|
) {
|
|
| (Ok(yMin), Ok(yMax)) => {
|
|
let result =
|
|
(yMin +. yMax) *. weightForAnOuterPoint +. innerPointsSum *. weightForAnInnerPoint
|
|
let wrappedResult = result->ReducerInterface_InternalExpressionValue.IEvNumber->Ok
|
|
wrappedResult
|
|
}
|
|
| (Error(b), _) => Error(b)
|
|
| (_, Error(b)) => Error(b)
|
|
}
|
|
resultWithOuterPoints
|
|
}
|
|
| false =>
|
|
Error(
|
|
"Integration error 3 in Danger.integrate. It's possible that your function doesn't return a number, try definining auxiliaryFunction(x) = mean(yourFunction(x)) and integrate auxiliaryFunction instead",
|
|
)
|
|
}
|
|
result
|
|
}
|
|
type diminishingReturnsAccumulatorInner = {
|
|
optimalAllocations: array<float>,
|
|
currentMarginalReturns: result<array<float>, string>,
|
|
}
|
|
let findBiggestElementIndex = xs =>
|
|
E.A.reducei(xs, 0, (acc, newElement, index) => {
|
|
switch newElement > xs[acc] {
|
|
| true => index
|
|
| false => acc
|
|
}
|
|
})
|
|
type diminishingReturnsAccumulator = result<diminishingReturnsAccumulatorInner, string>
|
|
let diminishingMarginalReturnsForTwoFunctions = (
|
|
lambda1,
|
|
lambda2,
|
|
funds,
|
|
approximateIncrement,
|
|
environment,
|
|
reducer,
|
|
) => {
|
|
/*
|
|
Two possible algorithms (n=funds/increment, m=num lambdas)
|
|
1. O(n): Iterate through value on next n dollars. At each step, only compute the new marginal return of the function which is spent
|
|
2. O(n*m): Iterate through all possible spending combinations. Fun is, it doesn't assume that the returns of marginal spending are diminishing.
|
|
*/
|
|
let applyFunctionAtFloatToFloatOption = (lambda, point: float) => {
|
|
// Defined here so that it has access to environment, reducer
|
|
let pointAsInternalExpression = castFloatToInternalNumber(point)
|
|
let resultAsInternalExpression = Reducer_Expression_Lambda.doLambdaCall(
|
|
lambda,
|
|
list{pointAsInternalExpression},
|
|
environment,
|
|
reducer,
|
|
)
|
|
let result = switch resultAsInternalExpression {
|
|
| Ok(IEvNumber(x)) => Ok(x)
|
|
| Error(_) =>
|
|
Error(
|
|
"Integration error 1 in Danger.diminishingMarginalReturnsForTwoFunctions. It's possible that your function doesn't return a number, try definining auxiliaryFunction(x) = mean(yourFunction(x)) and integrate auxiliaryFunction instead",
|
|
)
|
|
| _ => Error("Integration error 2 in Danger.diminishingMarginalReturnsForTwoFunctions")
|
|
}
|
|
result
|
|
}
|
|
|
|
let numDivisions = Js.Math.round(funds /. approximateIncrement)
|
|
let numDivisionsInt = Belt.Float.toInt(numDivisions)
|
|
let increment = funds /. numDivisions
|
|
let arrayOfIncrements = Belt.Array.makeBy(numDivisionsInt, _ => increment)
|
|
|
|
let initAccumulator: diminishingReturnsAccumulator = Ok({
|
|
optimalAllocations: [0.0, 0.0],
|
|
currentMarginalReturns: E.A.R.firstErrorOrOpen([
|
|
applyFunctionAtFloatToFloatOption(lambda1, 0.0),
|
|
applyFunctionAtFloatToFloatOption(lambda2, 0.0),
|
|
]),
|
|
})
|
|
let optimalAllocationEndAccumulator = E.A.reduce(arrayOfIncrements, initAccumulator, (
|
|
acc,
|
|
newIncrement,
|
|
) => {
|
|
switch acc {
|
|
| Ok(accInner) => {
|
|
let oldMarginalReturnsWrapped = accInner.currentMarginalReturns
|
|
let newAccWrapped = switch oldMarginalReturnsWrapped {
|
|
| Ok(oldMarginalReturns) => {
|
|
let indexOfBiggestDMR = findBiggestElementIndex(oldMarginalReturns)
|
|
let newOptimalAllocations = Belt.Array.copy(accInner.optimalAllocations)
|
|
let newOptimalAllocationsi = newOptimalAllocations[indexOfBiggestDMR] +. newIncrement
|
|
newOptimalAllocations[indexOfBiggestDMR] = newOptimalAllocationsi
|
|
let lambdai = indexOfBiggestDMR == 0 ? lambda1 : lambda2 // to do: generalize
|
|
let newMarginalResultsLambdai = applyFunctionAtFloatToFloatOption(
|
|
lambdai,
|
|
newOptimalAllocationsi,
|
|
)
|
|
let newCurrentMarginalReturns = switch newMarginalResultsLambdai {
|
|
| Ok(value) => {
|
|
let result = Belt.Array.copy(oldMarginalReturns)
|
|
result[indexOfBiggestDMR] = value
|
|
Ok(result)
|
|
}
|
|
| Error(b) => Error(b)
|
|
}
|
|
|
|
let newAcc: diminishingReturnsAccumulatorInner = {
|
|
optimalAllocations: newOptimalAllocations,
|
|
currentMarginalReturns: newCurrentMarginalReturns,
|
|
}
|
|
Ok(newAcc)
|
|
}
|
|
| Error(b) => Error(b)
|
|
}
|
|
newAccWrapped
|
|
}
|
|
| Error(b) => Error(b)
|
|
}
|
|
/* let findSmaller = (_) => 0
|
|
let smallerDMR =
|
|
acc
|
|
*/
|
|
})
|
|
let optimalAllocationResult = switch optimalAllocationEndAccumulator {
|
|
| Ok(inner) => Ok(castArrayOfFloatsToInternalArrayOfInternals(inner.optimalAllocations))
|
|
| Error(b) => Error(b)
|
|
}
|
|
optimalAllocationResult
|
|
}
|
|
let diminishingMarginalReturnsForManyFunctionsSkeleton = (
|
|
lambdas,
|
|
funds,
|
|
approximateIncrement,
|
|
environment,
|
|
reducer,
|
|
) => {
|
|
let result = [0.0, 0.0]->castArrayOfFloatsToInternalArrayOfInternals->Ok
|
|
result
|
|
}
|
|
/*
|
|
let diminishingMarginalReturnsForManyFunctions = (
|
|
lambdas,
|
|
funds,
|
|
approximateIncrement,
|
|
environment,
|
|
reducer,
|
|
) => {
|
|
/*
|
|
Two possible algorithms (n=funds/increment, m=num lambdas)
|
|
1. O(n): Iterate through value on next n dollars. At each step, only compute the new marginal return of the function which is spent
|
|
2. O(n*m): Iterate through all possible spending combinations. Fun is, it doesn't assume that the returns of marginal spending are diminishing.
|
|
*/
|
|
let applyFunctionAtFloatToFloatOption = (lambda, point: float) => {
|
|
// Defined here so that it has access to environment, reducer
|
|
let pointAsInternalExpression = castFloatToInternalNumber(point)
|
|
let resultAsInternalExpression = Reducer_Expression_Lambda.doLambdaCall(
|
|
lambda,
|
|
list{pointAsInternalExpression},
|
|
environment,
|
|
reducer,
|
|
)
|
|
let result = switch resultAsInternalExpression {
|
|
| Ok(IEvNumber(x)) => Ok(x)
|
|
| Error(_) =>
|
|
Error(
|
|
"Error 1 in Danger.diminishingMarginalReturnsForManyFunctions. It's possible that your function doesn't return a number, try definining auxiliaryFunction(x) = mean(yourFunction(x)) and integrate auxiliaryFunction instead",
|
|
)
|
|
| _ => Error("Error 2 in Danger.diminishingMarginalReturnsForManyFunctions")
|
|
}
|
|
result
|
|
}
|
|
let numDivisions = Js.Math.round(funds /. approximateIncrement)
|
|
let numDivisionsInt = Belt.Float.toInt(numDivisions)
|
|
let increment = funds /. numDivisions
|
|
let arrayOfIncrements = Belt.Array.makeBy(numDivisionsInt, _ => increment)
|
|
let numLambdas = E.A.length(lambdas)
|
|
let initAccumulator: diminishingReturnsAccumulator = Ok({
|
|
optimalAllocations: Belt.Array.makeBy(numLambdas, _ => 0.0),
|
|
currentMarginalReturns: E.A.fmap(
|
|
lambda => applyFunctionAtFloatToFloatOption(lambda, 0.0),
|
|
lambdas,
|
|
)->E.A.R.firstErrorOrOpen,
|
|
})
|
|
let optimalAllocationEndAccumulator = E.A.reduce(arrayOfIncrements, initAccumulator, (
|
|
acc,
|
|
newIncrement,
|
|
) => {
|
|
switch acc {
|
|
| Ok(accInner) => {
|
|
let oldMarginalReturnsWrapped = accInner.currentMarginalReturns
|
|
let newAccWrapped = switch oldMarginalReturnsWrapped {
|
|
| Ok(oldMarginalReturns) => {
|
|
let indexOfBiggestDMR = findBiggestElementIndex(oldMarginalReturns)
|
|
let newOptimalAllocations = Belt.Array.copy(accInner.optimalAllocations)
|
|
let newOptimalAllocationsi =
|
|
newOptimalAllocations[indexOfBiggestDMR] +. newIncrement
|
|
newOptimalAllocations[indexOfBiggestDMR] = newOptimalAllocationsi
|
|
let lambdai = lambdas[indexOfBiggestDMR]
|
|
let newMarginalResultsLambdai = applyFunctionAtFloatToFloatOption(
|
|
lambdai,
|
|
newOptimalAllocationsi,
|
|
)
|
|
let newCurrentMarginalReturns = switch newMarginalResultsLambdai {
|
|
| Ok(value) => {
|
|
let result = Belt.Array.copy(oldMarginalReturns)
|
|
result[indexOfBiggestDMR] = value
|
|
Ok(result)
|
|
}
|
|
| Error(b) => Error(b)
|
|
}
|
|
|
|
let newAcc: diminishingReturnsAccumulatorInner = {
|
|
optimalAllocations: newOptimalAllocations,
|
|
currentMarginalReturns: newCurrentMarginalReturns,
|
|
}
|
|
Ok(newAcc)
|
|
}
|
|
| Error(b) => Error(b)
|
|
}
|
|
newAccWrapped
|
|
}
|
|
| Error(b) => Error(b)
|
|
}
|
|
})
|
|
let optimalAllocationResult = switch optimalAllocationEndAccumulator {
|
|
| Ok(inner) => Ok(castArrayOfFloatsToInternalArrayOfInternals(inner.optimalAllocations))
|
|
| Error(b) => Error(b)
|
|
}
|
|
optimalAllocationResult
|
|
//let result = [0.0, 0.0]->castArrayOfFloatsToInternalArrayOfInternals->Ok
|
|
// result
|
|
}*/
|
|
}
|
|
|
|
let library = [
|
|
Function.make(
|
|
~name="laplace",
|
|
~nameSpace,
|
|
~requiresNamespace,
|
|
~output=EvtNumber,
|
|
~examples=[`Danger.laplace(1, 20)`],
|
|
~definitions=[
|
|
NNumbersToNumber.Two.make("laplace", ((successes, trials)) =>
|
|
(successes +. 1.0) /. (trials +. 2.0)
|
|
),
|
|
],
|
|
(),
|
|
),
|
|
Function.make(
|
|
~name="factorial",
|
|
~nameSpace,
|
|
~requiresNamespace,
|
|
~output=EvtNumber,
|
|
~examples=[`Danger.factorial(20)`],
|
|
~definitions=[NNumbersToNumber.One.make("factorial", Internals.factorial)],
|
|
(),
|
|
),
|
|
Function.make(
|
|
~name="choose",
|
|
~nameSpace,
|
|
~requiresNamespace,
|
|
~output=EvtNumber,
|
|
~examples=[`Danger.choose(1, 20)`],
|
|
~definitions=[NNumbersToNumber.Two.make("choose", Internals.choose)],
|
|
(),
|
|
),
|
|
Function.make(
|
|
~name="binomial",
|
|
~nameSpace,
|
|
~requiresNamespace,
|
|
~output=EvtNumber,
|
|
~examples=[`Danger.binomial(1, 20, 0.5)`],
|
|
~definitions=[NNumbersToNumber.Three.make("binomial", Internals.binomial)],
|
|
(),
|
|
),
|
|
// Helper functions building up to the integral
|
|
Function.make(
|
|
~name="applyFunctionAtZero",
|
|
~nameSpace,
|
|
~output=EvtNumber,
|
|
~requiresNamespace=false,
|
|
~examples=[`Danger.applyFunctionAtZero({|x| x+1})`],
|
|
~definitions=[
|
|
FnDefinition.make(
|
|
~name="applyFunctionAtZero",
|
|
~inputs=[FRTypeLambda],
|
|
~run=(inputs, _, environment, reducer) => {
|
|
let result = switch inputs {
|
|
| [IEvLambda(aLambda)] =>
|
|
Internals.applyFunctionAtPoint(
|
|
aLambda,
|
|
Internals.castFloatToInternalNumber(0.0),
|
|
environment,
|
|
reducer,
|
|
)->E.R2.errMap(_ => "Error!")
|
|
| _ => Error(impossibleError)
|
|
}
|
|
result
|
|
},
|
|
(),
|
|
),
|
|
],
|
|
(),
|
|
),
|
|
Function.make(
|
|
~name="applyFunctionAtPoint",
|
|
~nameSpace,
|
|
~output=EvtNumber,
|
|
~requiresNamespace=false,
|
|
~examples=[`Danger.applyFunctionAtPoint({|x| x+1}, 1)`],
|
|
~definitions=[
|
|
FnDefinition.make(
|
|
~name="applyFunctionAtPoint",
|
|
~inputs=[FRTypeLambda, FRTypeNumber],
|
|
~run=(inputs, _, env, reducer) =>
|
|
switch inputs {
|
|
| [IEvLambda(aLambda), point] =>
|
|
Internals.applyFunctionAtPoint(aLambda, point, env, reducer)->E.R2.errMap(_ => "Error!")
|
|
| _ => Error(impossibleError)
|
|
},
|
|
(),
|
|
),
|
|
],
|
|
(),
|
|
),
|
|
// Integral in terms of function, min, max, num points
|
|
// Note that execution time will be more predictable, because it
|
|
// will only depend on num points and the complexity of the function
|
|
Function.make(
|
|
~name="integrateFunctionBetweenWithNumIntegrationPoints",
|
|
~nameSpace,
|
|
~output=EvtNumber,
|
|
~requiresNamespace=false,
|
|
~examples=[`Danger.integrateFunctionBetweenWithNumIntegrationPoints({|x| x+1}, 1, 10, 10)`],
|
|
// should be [x^2/2 + x]1_10 = (100/2 + 10) - (1/2 + 1) = 60 - 1.5 = 58.5
|
|
// https://www.wolframalpha.com/input?i=integrate+x%2B1+from+1+to+10
|
|
~definitions=[
|
|
FnDefinition.make(
|
|
~name="integrateFunctionBetweenWithNumIntegrationPoints",
|
|
~inputs=[FRTypeLambda, FRTypeNumber, FRTypeNumber, FRTypeNumber],
|
|
~run=(inputs, _, env, reducer) => {
|
|
let result = switch inputs {
|
|
| [_, _, _, IEvNumber(0.0)] =>
|
|
Error("Integration error 4 in Danger.integrate: Increment can't be 0.")
|
|
| [IEvLambda(aLambda), IEvNumber(min), IEvNumber(max), IEvNumber(numIntegrationPoints)] =>
|
|
Internals.integrateFunctionBetweenWithNumIntegrationPoints(
|
|
aLambda,
|
|
min,
|
|
max,
|
|
numIntegrationPoints,
|
|
env,
|
|
reducer,
|
|
)
|
|
| _ =>
|
|
Error(
|
|
"Integration error 5 in Danger.integrate. Remember that inputs are (function, number (min), number (max), number(increment))",
|
|
)
|
|
}
|
|
result
|
|
},
|
|
(),
|
|
),
|
|
],
|
|
(),
|
|
),
|
|
// Integral in terms of function, min, max, epsilon (distance between points)
|
|
// Note that execution time will be less predictable, because it
|
|
// will depend on min, max and epsilon together,
|
|
// as well and the complexity of the function
|
|
Function.make(
|
|
~name="integrateFunctionBetweenWithEpsilon",
|
|
~nameSpace,
|
|
~output=EvtNumber,
|
|
~requiresNamespace=false,
|
|
~examples=[`Danger.integrateFunctionBetweenWithEpsilon({|x| x+1}, 1, 10, 0.1)`],
|
|
~definitions=[
|
|
FnDefinition.make(
|
|
~name="integrateFunctionBetweenWithEpsilon",
|
|
~inputs=[FRTypeLambda, FRTypeNumber, FRTypeNumber, FRTypeNumber],
|
|
~run=(inputs, _, env, reducer) => {
|
|
let result = switch inputs {
|
|
| [_, _, _, IEvNumber(0.0)] =>
|
|
Error("Integration error in Danger.integrate: Increment can't be 0.")
|
|
| [IEvLambda(aLambda), IEvNumber(min), IEvNumber(max), IEvNumber(epsilon)] =>
|
|
Internals.integrateFunctionBetweenWithNumIntegrationPoints(
|
|
aLambda,
|
|
min,
|
|
max,
|
|
(max -. min) /. epsilon,
|
|
env,
|
|
reducer,
|
|
)->E.R2.errMap(_ =>
|
|
"Integration error 7 in Danger.integrate. Something went wrong along the way"
|
|
)
|
|
| _ =>
|
|
Error(
|
|
"Integration error 8 in Danger.integrate. Remember that inputs are (function, number (min), number (max), number(increment))",
|
|
)
|
|
}
|
|
result
|
|
},
|
|
(),
|
|
),
|
|
],
|
|
(),
|
|
),
|
|
Function.make(
|
|
~name="diminishingMarginalReturnsForTwoFunctions",
|
|
~nameSpace,
|
|
~output=EvtArray,
|
|
~requiresNamespace=false,
|
|
~examples=[`Danger.diminishingMarginalReturnsForTwoFunctions({|x| x+1}, {|y| 10}, 100, 0.01)`],
|
|
~definitions=[
|
|
FnDefinition.make(
|
|
~name="diminishingMarginalReturnsForTwoFunctions",
|
|
~inputs=[FRTypeLambda, FRTypeLambda, FRTypeNumber, FRTypeNumber],
|
|
~run=(inputs, _, env, reducer) =>
|
|
switch inputs {
|
|
| [
|
|
IEvLambda(lambda1),
|
|
IEvLambda(lambda2),
|
|
IEvNumber(funds),
|
|
IEvNumber(approximateIncrement),
|
|
] =>
|
|
Internals.diminishingMarginalReturnsForTwoFunctions(
|
|
lambda1,
|
|
lambda2,
|
|
funds,
|
|
approximateIncrement,
|
|
env,
|
|
reducer,
|
|
)
|
|
| _ => Error("Error in Danger.diminishingMarginalReturnsForTwoFunctions")
|
|
},
|
|
(),
|
|
),
|
|
],
|
|
(),
|
|
),
|
|
Function.make(
|
|
~name="diminishingMarginalReturnsForFunctions3",
|
|
~nameSpace,
|
|
~output=EvtArray,
|
|
~requiresNamespace=false,
|
|
~examples=[
|
|
`Danger.diminishingMarginalReturnsForFunctions3({|x| x+1}, {|y| 10}, {|z| 20-2x}, 100, 0.01)`,
|
|
],
|
|
~definitions=[
|
|
FnDefinition.make(
|
|
~name="diminishingMarginalReturnsForFunctions3",
|
|
~inputs=[FRTypeLambda, FRTypeLambda, FRTypeLambda, FRTypeNumber, FRTypeNumber],
|
|
~run=(inputs, _, env, reducer) =>
|
|
switch inputs {
|
|
| [
|
|
IEvLambda(lambda1),
|
|
IEvLambda(lambda2),
|
|
IEvLambda(lambda3),
|
|
IEvNumber(funds),
|
|
IEvNumber(approximateIncrement),
|
|
] =>
|
|
Internals.diminishingMarginalReturnsForManyFunctionsSkeleton(
|
|
[lambda1, lambda2, lambda3],
|
|
funds,
|
|
approximateIncrement,
|
|
env,
|
|
reducer,
|
|
)
|
|
| _ => Error("Error in Danger.diminishingMarginalReturnsForFunctions3")
|
|
},
|
|
(),
|
|
),
|
|
],
|
|
(),
|
|
),
|
|
/* The following will compile, but not work, because of this bug: <https://github.com/quantified-uncertainty/squiggle/issues/558> Instead, I am creating different functions for different numbers of inputs
|
|
Function.make(
|
|
~name="diminishingMarginalReturnsForManyFunctions",
|
|
~nameSpace,
|
|
~output=EvtArray,
|
|
~requiresNamespace=false,
|
|
~examples=[
|
|
`Danger.diminishingMarginalReturnsForManyFunctions([{|x| x+1}, {|y| 10}], 100, 0.01)`,
|
|
],
|
|
~definitions=[
|
|
FnDefinition.make(
|
|
~name="diminishingMarginalReturnsForManyFunctions",
|
|
~inputs=[FRTypeArray(FRTypeLambda), FRTypeNumber, FRTypeNumber],
|
|
~run=(inputs, _, environment, reducer) =>
|
|
switch inputs {
|
|
| [IEvArray(innerlambdas), IEvNumber(funds), IEvNumber(approximateIncrement)] => {
|
|
let individuallyWrappedLambdas = E.A.fmap(innerLambda => {
|
|
switch innerLambda {
|
|
| ReducerInterface_InternalExpressionValue.IEvLambda(lambda) => Ok(lambda)
|
|
| _ =>
|
|
Error(
|
|
"Error in Danger.diminishingMarginalReturnsForManyFunctions. A member of the array wasn't a function",
|
|
)
|
|
}
|
|
}, innerlambdas)
|
|
let wrappedLambdas = E.A.R.firstErrorOrOpen(individuallyWrappedLambdas)
|
|
let result = switch wrappedLambdas {
|
|
| Ok(lambdas) => {
|
|
let result = Internals.diminishingMarginalReturnsForManyFunctions(
|
|
lambdas,
|
|
funds,
|
|
approximateIncrement,
|
|
environment,
|
|
reducer,
|
|
)
|
|
result
|
|
}
|
|
| Error(b) => Error(b)
|
|
}
|
|
result //Error("wtf man")
|
|
}
|
|
| _ => Error("Error in Danger.diminishingMarginalReturnsForTwoFunctions")
|
|
},
|
|
(),
|
|
),
|
|
],
|
|
(),
|
|
),
|
|
*/
|
|
]
|