squiggle/packages/website/docs/Api/DistGeneric.mdx
2022-06-11 08:57:02 -07:00

648 lines
9.4 KiB
Plaintext
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
sidebar_position: 3
title: Distribution
---
import TOCInline from "@theme/TOCInline";
<TOCInline toc={toc} />
## Distribution Creation
### Normal Distribution
**Definitions**
```javascript
normal: (frValueDistOrNumber, frValueDistOrNumber) => distribution;
```
```javascript
normal: (dict<{p5: frValueDistOrNumber, p95: frValueDistOrNumber}>) => distribution
```
```javascript
normal: (dict<{mean: frValueDistOrNumber, stdev: frValueDistOrNumber}>) => distribution
```
**Examples**
```js
normal(5, 1);
normal({ p5: 4, p95: 10 });
normal({ mean: 5, stdev: 2 });
```
### Lognormal Distribution
**Definitions**
```javascript
lognormal: (frValueDistOrNumber, frValueDistOrNumber) => distribution;
```
```javascript
lognormal: (dict<{p5: frValueDistOrNumber, p95: frValueDistOrNumber}>) => distribution
```
```javascript
lognormal: (dict<{mean: frValueDistOrNumber, stdev: frValueDistOrNumber}>) => distribution
```
**Examples**
```javascript
lognormal(0.5, 0.8);
lognormal({ p5: 4, p95: 10 });
lognormal({ mean: 5, stdev: 2 });
```
### Uniform Distribution
**Definitions**
```javascript
uniform: (frValueDistOrNumber, frValueDistOrNumber) => distribution;
```
**Examples**
```javascript
uniform(10, 12);
```
### Beta Distribution
**Definitions**
```javascript
beta: (frValueDistOrNumber, frValueDistOrNumber) => distribution;
```
**Examples**
```javascript
beta(20, 25);
```
### Cauchy Distribution
**Definitions**
```javascript
cauchy: (frValueDistOrNumber, frValueDistOrNumber) => distribution;
```
**Examples**
```javascript
cauchy(5, 1);
```
### Gamma Distribution
**Definitions**
```javascript
gamma: (frValueDistOrNumber, frValueDistOrNumber) => distribution;
```
**Examples**
```javascript
gamma(5, 1);
```
### Logistic Distribution
**Definitions**
```javascript
logistic: (frValueDistOrNumber, frValueDistOrNumber) => distribution;
```
**Examples**
```javascript
gamma(5, 1);
```
### To (Distribution)
**Definitions**
```javascript
to: (frValueDistOrNumber, frValueDistOrNumber) => distribution;
```
```javascript
credibleIntervalToDistribution(frValueDistOrNumber, frValueDistOrNumber) => distribution;
```
**Examples**
```javascript
5 to 10
to(5,10)
-5 to 5
```
### Exponential
**Definitions**
```javascript
exponential: (frValueDistOrNumber) => distribution;
```
**Examples**
```javascript
exponential(2);
```
### Bernoulli
**Definitions**
```javascript
bernoulli: (frValueDistOrNumber) => distribution;
```
**Examples**
```javascript
bernoulli(0.5);
```
### toContinuousPointSet
Converts a set of points to a continuous distribution
**Definitions**
```javascript
toContinuousPointSet: (array<dict<{x: numeric, y: numeric}>>) => distribution
```
**Examples**
```javascript
toContinuousPointSet([
{ x: 0, y: 0.1 },
{ x: 1, y: 0.2 },
{ x: 2, y: 0.15 },
{ x: 3, y: 0.1 },
]);
```
### toDiscretePointSet
Converts a set of points to a discrete distribution
**Definitions**
```javascript
toDiscretePointSet: (array<dict<{x: numeric, y: numeric}>>) => distribution
```
**Examples**
```javascript
toDiscretePointSet([
{ x: 0, y: 0.1 },
{ x: 1, y: 0.2 },
{ x: 2, y: 0.15 },
{ x: 3, y: 0.1 },
]);
```
## Functions
### mixture
```javascript
mixture: (...distributionLike, weights:list<float>) => distribution
```
**Examples**
```javascript
mixture(normal(5, 1), normal(10, 1));
mx(normal(5, 1), normal(10, 1), [0.3, 0.7]);
```
### sample
Get one random sample from the distribution
```javascript
sample(distribution) => number
```
**Examples**
```javascript
sample(normal(5, 2));
```
### sampleN
Get n random samples from the distribution
```javascript
sampleN: (distribution, number) => list<number>
```
**Examples**
```javascript
sample: normal(5, 2), 100;
```
### mean
Get the distribution mean
```javascript
mean: (distribution) => number;
```
**Examples**
```javascript
mean: normal(5, 2);
```
### stdev
```javascript
stdev: (distribution) => number;
```
### variance
```javascript
variance: (distribution) => number;
```
### mode
```javascript
mode: (distribution) => number;
```
### cdf
```javascript
cdf: (distribution, number) => number;
```
**Examples**
```javascript
cdf: normal(5, 2), 3;
```
### pdf
```javascript
pdf: (distribution, number) => number;
```
**Examples**
```javascript
pdf(normal(5, 2), 3);
```
### inv
```javascript
inv: (distribution, number) => number;
```
**Examples**
```javascript
inv(normal(5, 2), 0.5);
```
### toPointSet
Converts a distribution to the pointSet format
```javascript
toPointSet: (distribution) => pointSetDistribution;
```
**Examples**
```javascript
toPointSet(normal(5, 2));
```
### toSampleSet
Converts a distribution to the sampleSet format, with n samples
```javascript
toSampleSet: (distribution, number) => sampleSetDistribution;
```
**Examples**
```javascript
toSampleSet(normal(5, 2), 1000);
```
### truncateLeft
Truncates the left side of a distribution. Returns either a pointSet distribution or a symbolic distribution.
```javascript
truncateLeft: (distribution, l => number) => distribution
```
**Examples**
```javascript
truncateLeft(normal(5, 2), 3);
```
### truncateRight
Truncates the right side of a distribution. Returns either a pointSet distribution or a symbolic distribution.
```javascript
truncateRight: (distribution, r => number) => distribution
```
**Examples**
```javascript
truncateLeft(normal(5, 2), 6);
```
## Scoring
### klDivergence
KullbackLeibler divergence between two distributions
```javascript
klDivergence: (distribution, distribution) => number;
```
**Examples**
```javascript
klDivergence(normal(5, 2), normal(5, 4)); // returns 0.57
```
## Display
### toString
```javascript
toString: (distribution) => string;
```
**Examples**
```javascript
toString(normal(5, 2));
```
### toSparkline
Produce a sparkline of length n
```javascript
toSparkline: (distribution, n = 20) => string;
```
**Examples**
```javascript
toSparkline(normal(5, 2), 10);
```
### inspect
Prints the value of the distribution to the Javascript console, then returns the distribution.
```javascript
inspect: (distribution) => distribution;
```
**Examples**
```javascript
inspect(normal(5, 2));
```
## Normalization
### normalize
Normalize a distribution. This means scaling it appropriately so that it's cumulative sum is equal to 1.
```javascript
normalize: (distribution) => distribution;
```
**Examples**
```javascript
normalize(normal(5, 2));
```
### isNormalized
Check of a distribution is normalized. Most distributions are typically normalized, but there are some commands that could produce non-normalized distributions.
```javascript
isNormalized: (distribution) => bool;
```
**Examples**
```javascript
isNormalized(normal(5, 2)); // returns true
```
### integralSum
Get the sum of the integral of a distribution. If the distribution is normalized, this will be 1.
```javascript
integralSum: (distribution) => number;
```
**Examples**
```javascript
integralSum(normal(5, 2));
```
## Algebraic Operations
### add
```javascript
add: (distributionLike, distributionLike) => distribution;
```
### sum
```javascript
sum: (list<distributionLike>) => distribution
```
### multiply
```javascript
multiply: (distributionLike, distributionLike) => distribution;
```
### product
```javascript
product: (list<distributionLike>) => distribution
```
### subtract
```javascript
subtract: (distributionLike, distributionLike) => distribution;
```
### divide
```javascript
divide: (distributionLike, distributionLike) => distribution;
```
### pow
```javascript
pow: (distributionLike, distributionLike) => distribution;
```
### exp
```javascript
exp: (distributionLike, distributionLike) => distribution;
```
### log
```javascript
log: (distributionLike, distributionLike) => distribution;
```
### log10
```javascript
log10: (distributionLike, distributionLike) => distribution;
```
### unaryMinus
```javascript
unaryMinus: (distribution) => distribution;
```
## Pointwise Operations
### dotAdd
```javascript
dotAdd: (distributionLike, distributionLike) => distribution;
```
### dotMultiply
```javascript
dotMultiply: (distributionLike, distributionLike) => distribution;
```
### dotSubtract
```javascript
dotSubtract: (distributionLike, distributionLike) => distribution;
```
### dotDivide
```javascript
dotDivide: (distributionLike, distributionLike) => distribution;
```
### dotPow
```javascript
dotPow: (distributionLike, distributionLike) => distribution;
```
### dotExp
```javascript
dotExp: (distributionLike, distributionLike) => distribution;
```
## Scale Operations
### scaleMultiply
```javascript
scaleMultiply: (distributionLike, number) => distribution;
```
### scalePow
```javascript
scalePow: (distributionLike, number) => distribution;
```
### scaleExp
```javascript
scaleExp: (distributionLike, number) => distribution;
```
### scaleLog
```javascript
scaleLog: (distributionLike, number) => distribution;
```
### scaleLog10
```javascript
scaleLog10: (distributionLike, number) => distribution;
```
## Special
### Declaration (Continuous Function)
Adds metadata to a function of the input ranges. Works now for numeric and date inputs. This is useful when making predictions. It allows you to limit the domain that your prediction will be used and scored within.
```javascript
declareFn: (dict<{fn: lambda, inputs: array<dict<{min: number, max: number}>>}>) => declaration
```
**Examples**
```javascript
declareFn({
fn: {|a,b| a },
inputs: [
{min: 0, max: 100},
{min: 30, max: 50}
]
})
```