squiggle/packages/squiggle-lang/src/rescript/Utility/Operation.res
Sam Nolan 508f673873 Change NaN operations to results
- Also deleting old GenericDist_Types
- Also removing some string errors
2022-04-22 16:27:17 -04:00

174 lines
4.0 KiB
Plaintext

// This file has no dependencies. It's used outside of the interpreter, but the interpreter depends on it.
@genType
type algebraicOperation = [
| #Add
| #Multiply
| #Subtract
| #Divide
| #Power
| #Logarithm
]
type convolutionOperation = [
| #Add
| #Multiply
| #Subtract
]
@genType
type pointwiseOperation = [#Add | #Multiply | #Power]
type scaleOperation = [#Multiply | #Power | #Logarithm | #Divide]
type distToFloatOperation = [
| #Pdf(float)
| #Cdf(float)
| #Inv(float)
| #Mean
| #Sample
]
module Convolution = {
type t = convolutionOperation
let toFn: (t, float, float) => float = x =>
switch x {
| #Add => \"+."
| #Subtract => \"-."
| #Multiply => \"*."
}
}
@genType
type invalidOperationError =
| DivisionByZeroError
| ComplexNumberError
let invalidOperationErrorToString = (err: invalidOperationError): string =>
switch err {
| DivisionByZeroError => "Cannot divide by zero"
| ComplexNumberError => "Operation returned complex result"
}
module Algebraic = {
type t = algebraicOperation
let toFn: (t, float, float) => result<float, invalidOperationError> = (x, a, b) =>
switch x {
| #Add => Ok(a +. b)
| #Subtract => Ok(a -. b)
| #Multiply => Ok(a *. b)
| #Power =>
if a > 0.0 {
Ok(a ** b)
} else {
Error(ComplexNumberError)
}
| #Divide =>
if b != 0.0 {
Ok(a /. b)
} else {
Error(DivisionByZeroError)
}
| #Logarithm =>
if a > 0.0 && b > 0.0 {
Ok(log(a) /. log(b))
} else {
Error(ComplexNumberError)
}
}
let toString = x =>
switch x {
| #Add => "+"
| #Subtract => "-"
| #Multiply => "*"
| #Power => "**"
| #Divide => "/"
| #Logarithm => "log"
}
let format = (a, b, c) => b ++ (" " ++ (toString(a) ++ (" " ++ c)))
}
module Pointwise = {
type t = pointwiseOperation
let toString = x =>
switch x {
| #Add => "+"
| #Power => "**"
| #Multiply => "*"
}
let format = (a, b, c) => b ++ (" " ++ (toString(a) ++ (" " ++ c)))
}
module DistToFloat = {
type t = distToFloatOperation
let format = (operation, value) =>
switch operation {
| #Cdf(f) => j`cdf(x=$f,$value)`
| #Pdf(f) => j`pdf(x=$f,$value)`
| #Inv(f) => j`inv(x=$f,$value)`
| #Sample => "sample($value)"
| #Mean => "mean($value)"
}
}
// Note that different logarithms don't really do anything.
module Scale = {
type t = scaleOperation
let toFn = (x: t, a: float, b: float): result<float, invalidOperationError> =>
switch x {
| #Multiply => Ok(a *. b)
| #Divide =>
if b != 0.0 {
Ok(a /. b)
} else {
Error(DivisionByZeroError)
}
| #Power =>
if a > 0.0 {
Ok(a ** b)
} else {
Error(ComplexNumberError)
}
| #Logarithm =>
if a > 0.0 && b > 0.0 {
Ok(log(a) /. log(b))
} else {
Error(DivisionByZeroError)
}
}
let format = (operation: t, value, scaleBy) =>
switch operation {
| #Multiply => j`verticalMultiply($value, $scaleBy) `
| #Divide => j`verticalDivide($value, $scaleBy) `
| #Power => j`verticalPower($value, $scaleBy) `
| #Logarithm => j`verticalLog($value, $scaleBy) `
}
let toIntegralSumCacheFn = x =>
switch x {
| #Multiply => (a, b) => Some(a *. b)
| #Divide => (a, b) => Some(a /. b)
| #Power => (_, _) => None
| #Logarithm => (_, _) => None
}
let toIntegralCacheFn = x =>
switch x {
| #Multiply => (_, _) => None // TODO: this could probably just be multiplied out (using Continuous.scaleBy)
| #Divide => (_, _) => None
| #Power => (_, _) => None
| #Logarithm => (_, _) => None
}
}
module Truncate = {
let toString = (left: option<float>, right: option<float>, nodeToString) => {
let left = left |> E.O.dimap(Js.Float.toString, () => "-inf")
let right = right |> E.O.dimap(Js.Float.toString, () => "inf")
j`truncate($nodeToString, $left, $right)`
}
}