413 lines
14 KiB
Plaintext
413 lines
14 KiB
Plaintext
/*
|
|
This file is like a half measure between one-off unit tests and proper invariant validation.
|
|
As such, I'm not that excited about it, though it does provide some structure and will alarm us
|
|
when things substantially change.
|
|
Also, there are some open comments in https://github.com/quantified-uncertainty/squiggle/pull/232 that haven't been addressed.
|
|
*/
|
|
|
|
open Jest
|
|
open Expect
|
|
open TestHelpers
|
|
|
|
let {
|
|
normalDist5, // mean=5, stdev=2
|
|
normalDist10, // mean=10, stdev=2
|
|
normalDist20, // mean=20, stdev=2
|
|
normalDist, // mean=5; stdev=2
|
|
uniformDist, // low=9; high=10
|
|
betaDist, // alpha=2; beta=5
|
|
lognormalDist, // mu=0; sigma=1
|
|
cauchyDist, // local=1; scale=1
|
|
triangularDist, // low=1; medium=2; high=3;
|
|
exponentialDist, // rate=2
|
|
} = module(GenericDist_Fixtures)
|
|
|
|
let {
|
|
algebraicAdd,
|
|
algebraicMultiply,
|
|
algebraicDivide,
|
|
algebraicSubtract,
|
|
algebraicLogarithm,
|
|
algebraicPower,
|
|
} = module(DistributionOperation.Constructors)
|
|
|
|
let algebraicAdd = algebraicAdd(~env)
|
|
let algebraicMultiply = algebraicMultiply(~env)
|
|
let algebraicDivide = algebraicDivide(~env)
|
|
let algebraicSubtract = algebraicSubtract(~env)
|
|
let algebraicLogarithm = algebraicLogarithm(~env)
|
|
let algebraicPower = algebraicPower(~env)
|
|
|
|
describe("(Algebraic) addition of distributions", () => {
|
|
describe("mean", () => {
|
|
test(
|
|
"normal(mean=5) + normal(mean=20)",
|
|
() => {
|
|
normalDist5
|
|
->algebraicAdd(normalDist20)
|
|
->E.R2.fmap(DistributionTypes.Constructors.UsingDists.mean)
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toExn("Expected float", _)
|
|
->expect
|
|
->toBe(Some(2.5e1))
|
|
},
|
|
)
|
|
|
|
test(
|
|
"uniform(low=9, high=10) + beta(alpha=2, beta=5)",
|
|
() => {
|
|
// let uniformMean = (9.0 +. 10.0) /. 2.0
|
|
// let betaMean = 1.0 /. (1.0 +. 5.0 /. 2.0)
|
|
let received =
|
|
uniformDist
|
|
->algebraicAdd(betaDist)
|
|
->E.R2.fmap(DistributionTypes.Constructors.UsingDists.mean)
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toExn("Expected float", _)
|
|
switch received {
|
|
| None => "algebraicAdd has"->expect->toBe("failed")
|
|
// This is nondeterministic, we could be in a situation where ci fails but you click rerun and it passes, which is bad.
|
|
// sometimes it works with ~digits=2.
|
|
| Some(x) => x->expect->toBeSoCloseTo(9.786831807237022, ~digits=1) // (uniformMean +. betaMean)
|
|
}
|
|
},
|
|
)
|
|
test(
|
|
"beta(alpha=2, beta=5) + uniform(low=9, high=10)",
|
|
() => {
|
|
// let uniformMean = (9.0 +. 10.0) /. 2.0
|
|
// let betaMean = 1.0 /. (1.0 +. 5.0 /. 2.0)
|
|
let received =
|
|
betaDist
|
|
->algebraicAdd(uniformDist)
|
|
->E.R2.fmap(DistributionTypes.Constructors.UsingDists.mean)
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toExn("Expected float", _)
|
|
switch received {
|
|
| None => "algebraicAdd has"->expect->toBe("failed")
|
|
// This is nondeterministic, we could be in a situation where ci fails but you click rerun and it passes, which is bad.
|
|
// sometimes it works with ~digits=2.
|
|
| Some(x) => x->expect->toBeSoCloseTo(9.784290207736126, ~digits=1) // (uniformMean +. betaMean)
|
|
}
|
|
},
|
|
)
|
|
})
|
|
describe("pdf", () => {
|
|
// TEST IS WRONG. SEE STDEV ADDITION EXPRESSION.
|
|
testAll(
|
|
"(normal(mean=5) + normal(mean=5)).pdf (imprecise)",
|
|
list{8e0, 1e1, 1.2e1, 1.4e1},
|
|
x => {
|
|
let received =
|
|
normalDist10 // this should be normal(10, sqrt(8))
|
|
->Ok
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.pdf(d, x))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toOption
|
|
->E.O.flatten
|
|
let calculated =
|
|
normalDist5
|
|
->algebraicAdd(normalDist5)
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.pdf(d, x))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toOption
|
|
->E.O.flatten
|
|
|
|
switch received {
|
|
| None =>
|
|
"this branch occurs when the dispatch to Jstat on trusted input fails."
|
|
->expect
|
|
->toBe("never")
|
|
| Some(x) =>
|
|
switch calculated {
|
|
| None => "algebraicAdd has"->expect->toBe("failed")
|
|
| Some(y) => x->expect->toBeSoCloseTo(y, ~digits=0)
|
|
}
|
|
}
|
|
},
|
|
)
|
|
test(
|
|
"(normal(mean=10) + normal(mean=10)).pdf(1.9e1)",
|
|
() => {
|
|
let received =
|
|
normalDist20
|
|
->Ok
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.pdf(d, 1.9e1))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toOption
|
|
->E.O.flatten
|
|
let calculated =
|
|
normalDist10
|
|
->algebraicAdd(normalDist10)
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.pdf(d, 1.9e1))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toOption
|
|
->E.O.flatten
|
|
switch received {
|
|
| None =>
|
|
"this branch occurs when the dispatch to Jstat on trusted input fails."
|
|
->expect
|
|
->toBe("never")
|
|
| Some(x) =>
|
|
switch calculated {
|
|
| None => "algebraicAdd has"->expect->toBe("failed")
|
|
| Some(y) => x->expect->toBeSoCloseTo(y, ~digits=1)
|
|
}
|
|
}
|
|
},
|
|
)
|
|
test(
|
|
"(uniform(low=9, high=10) + beta(alpha=2, beta=5)).pdf(10)",
|
|
() => {
|
|
let received =
|
|
uniformDist
|
|
->algebraicAdd(betaDist)
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.pdf(d, 1e1))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toExn("Expected float", _)
|
|
switch received {
|
|
| None => "algebraicAdd has"->expect->toBe("failed")
|
|
// This is nondeterministic, we could be in a situation where ci fails but you click rerun and it passes, which is bad.
|
|
// sometimes it works with ~digits=4.
|
|
// This value was calculated by a python script
|
|
| Some(x) => x->expect->toBeSoCloseTo(0.979023, ~digits=0)
|
|
}
|
|
},
|
|
)
|
|
test(
|
|
"(beta(alpha=2, beta=5) + uniform(low=9, high=10)).pdf(10)",
|
|
() => {
|
|
let received =
|
|
betaDist
|
|
->algebraicAdd(uniformDist)
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.pdf(d, 1e1))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toExn("Expected float", _)
|
|
switch received {
|
|
| None => "algebraicAdd has"->expect->toBe("failed")
|
|
// This is nondeterministic.
|
|
| Some(x) => x->expect->toBeSoCloseTo(0.979023, ~digits=0)
|
|
}
|
|
},
|
|
)
|
|
})
|
|
describe("cdf", () => {
|
|
testAll(
|
|
"(normal(mean=5) + normal(mean=5)).cdf (imprecise)",
|
|
list{6e0, 8e0, 1e1, 1.2e1},
|
|
x => {
|
|
let received =
|
|
normalDist10
|
|
->Ok
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.cdf(d, x))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toOption
|
|
->E.O.flatten
|
|
let calculated =
|
|
normalDist5
|
|
->algebraicAdd(normalDist5)
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.cdf(d, x))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toOption
|
|
->E.O.flatten
|
|
|
|
switch received {
|
|
| None =>
|
|
"this branch occurs when the dispatch to Jstat on trusted input fails."
|
|
->expect
|
|
->toBe("never")
|
|
| Some(x) =>
|
|
switch calculated {
|
|
| None => "algebraicAdd has"->expect->toBe("failed")
|
|
| Some(y) => x->expect->toBeSoCloseTo(y, ~digits=0)
|
|
}
|
|
}
|
|
},
|
|
)
|
|
test(
|
|
"(normal(mean=10) + normal(mean=10)).cdf(1.25e1)",
|
|
() => {
|
|
let received =
|
|
normalDist20
|
|
->Ok
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.cdf(d, 1.25e1))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toOption
|
|
->E.O.flatten
|
|
let calculated =
|
|
normalDist10
|
|
->algebraicAdd(normalDist10)
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.cdf(d, 1.25e1))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toOption
|
|
->E.O.flatten
|
|
switch received {
|
|
| None =>
|
|
"this branch occurs when the dispatch to Jstat on trusted input fails."
|
|
->expect
|
|
->toBe("never")
|
|
| Some(x) =>
|
|
switch calculated {
|
|
| None => "algebraicAdd has"->expect->toBe("failed")
|
|
| Some(y) => x->expect->toBeSoCloseTo(y, ~digits=2)
|
|
}
|
|
}
|
|
},
|
|
)
|
|
test(
|
|
"(uniform(low=9, high=10) + beta(alpha=2, beta=5)).cdf(10)",
|
|
() => {
|
|
let received =
|
|
uniformDist
|
|
->algebraicAdd(betaDist)
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.cdf(d, 1e1))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toExn("Expected float", _)
|
|
switch received {
|
|
| None => "algebraicAdd has"->expect->toBe("failed")
|
|
// This is nondeterministic, we could be in a situation where ci fails but you click rerun and it passes, which is bad.
|
|
// The value was calculated externally using a python script
|
|
| Some(x) => x->expect->toBeSoCloseTo(0.71148, ~digits=1)
|
|
}
|
|
},
|
|
)
|
|
test(
|
|
"(beta(alpha=2, beta=5) + uniform(low=9, high=10)).cdf(10)",
|
|
() => {
|
|
let received =
|
|
betaDist
|
|
->algebraicAdd(uniformDist)
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.cdf(d, 1e1))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toExn("Expected float", _)
|
|
switch received {
|
|
| None => "algebraicAdd has"->expect->toBe("failed")
|
|
// This is nondeterministic, we could be in a situation where ci fails but you click rerun and it passes, which is bad.
|
|
// The value was calculated externally using a python script
|
|
| Some(x) => x->expect->toBeSoCloseTo(0.71148, ~digits=1)
|
|
}
|
|
},
|
|
)
|
|
})
|
|
|
|
describe("inv", () => {
|
|
testAll(
|
|
"(normal(mean=5) + normal(mean=5)).inv (imprecise)",
|
|
list{5e-2, 4.2e-3, 9e-3},
|
|
x => {
|
|
let received =
|
|
normalDist10
|
|
->Ok
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.inv(d, x))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toOption
|
|
->E.O.flatten
|
|
let calculated =
|
|
normalDist5
|
|
->algebraicAdd(normalDist5)
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.inv(d, x))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toOption
|
|
->E.O.flatten
|
|
|
|
switch received {
|
|
| None =>
|
|
"this branch occurs when the dispatch to Jstat on trusted input fails."
|
|
->expect
|
|
->toBe("never")
|
|
| Some(x) =>
|
|
switch calculated {
|
|
| None => "algebraicAdd has"->expect->toBe("failed")
|
|
| Some(y) => x->expect->toBeSoCloseTo(y, ~digits=-1)
|
|
}
|
|
}
|
|
},
|
|
)
|
|
test(
|
|
"(normal(mean=10) + normal(mean=10)).inv(1e-1)",
|
|
() => {
|
|
let received =
|
|
normalDist20
|
|
->Ok
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.inv(d, 1e-1))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toOption
|
|
->E.O.flatten
|
|
let calculated =
|
|
normalDist10
|
|
->algebraicAdd(normalDist10)
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.inv(d, 1e-1))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toOption
|
|
->E.O.flatten
|
|
switch received {
|
|
| None =>
|
|
"this branch occurs when the dispatch to Jstat on trusted input fails."
|
|
->expect
|
|
->toBe("never")
|
|
| Some(x) =>
|
|
switch calculated {
|
|
| None => "algebraicAdd has"->expect->toBe("failed")
|
|
| Some(y) => x->expect->toBeSoCloseTo(y, ~digits=-1)
|
|
}
|
|
}
|
|
},
|
|
)
|
|
test(
|
|
"(uniform(low=9, high=10) + beta(alpha=2, beta=5)).inv(2e-2)",
|
|
() => {
|
|
let received =
|
|
uniformDist
|
|
->algebraicAdd(betaDist)
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.inv(d, 2e-2))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toExn("Expected float", _)
|
|
switch received {
|
|
| None => "algebraicAdd has"->expect->toBe("failed")
|
|
// This is nondeterministic, we could be in a situation where ci fails but you click rerun and it passes, which is bad.
|
|
// sometimes it works with ~digits=2.
|
|
| Some(x) => x->expect->toBeSoCloseTo(9.179319623146968, ~digits=0)
|
|
}
|
|
},
|
|
)
|
|
test(
|
|
"(beta(alpha=2, beta=5) + uniform(low=9, high=10)).inv(2e-2)",
|
|
() => {
|
|
let received =
|
|
betaDist
|
|
->algebraicAdd(uniformDist)
|
|
->E.R2.fmap(d => DistributionTypes.Constructors.UsingDists.inv(d, 2e-2))
|
|
->E.R2.fmap(run)
|
|
->E.R2.fmap(toFloat)
|
|
->E.R.toExn("Expected float", _)
|
|
switch received {
|
|
| None => "algebraicAdd has"->expect->toBe("failed")
|
|
// This is nondeterministic, we could be in a situation where ci fails but you click rerun and it passes, which is bad.
|
|
// sometimes it works with ~digits=2.
|
|
| Some(x) => x->expect->toBeSoCloseTo(9.190872365862756, ~digits=0)
|
|
}
|
|
},
|
|
)
|
|
})
|
|
})
|