module MathJsonToMathJsAdt = { type arg = | Symbol(string) | Value(float) | Fn(fn) | Array(array(arg)) | Object(Js.Dict.t(arg)) and fn = { name: string, args: array(arg), }; let rec run = (j: Js.Json.t) => Json.Decode.( switch (field("mathjs", string, j)) { | "FunctionNode" => let args = j |> field("args", array(run)); Some( Fn({ name: j |> field("fn", field("name", string)), args: args |> E.A.O.concatSomes, }), ); | "OperatorNode" => let args = j |> field("args", array(run)); Some( Fn({ name: j |> field("fn", string), args: args |> E.A.O.concatSomes, }), ); | "ConstantNode" => optional(field("value", Json.Decode.float), j) |> E.O.fmap(r => Value(r)) | "ObjectNode" => let properties = j |> field("properties", dict(run)); Js.Dict.entries(properties) |> E.A.fmap(((key, value)) => value |> E.O.fmap(v => (key, v))) |> E.A.O.concatSomes |> Js.Dict.fromArray |> (r => Some(Object(r))); | "ArrayNode" => let items = field("items", array(run), j); Some(Array(items |> E.A.O.concatSomes)); | "SymbolNode" => Some(Symbol(field("name", string, j))) | n => Js.log3("Couldn't parse mathjs node", j, n); None; } ); }; module MathAdtToDistDst = { open MathJsonToMathJsAdt; module MathAdtCleaner = { let transformWithSymbol = (f: float, s: string) => switch (s) { | "K" | "k" => f *. 1000. | "M" | "m" => f *. 1000000. | "B" | "b" => f *. 1000000000. | "T" | "t" => f *. 1000000000000. | _ => f }; let rec run = fun | Fn({name: "multiply", args: [|Value(f), Symbol(s)|]}) => Value(transformWithSymbol(f, s)) | Fn({name, args}) => Fn({name, args: args |> E.A.fmap(run)}) | Array(args) => Array(args |> E.A.fmap(run)) | Symbol(s) => Symbol(s) | Value(v) => Value(v) | Object(v) => Object( v |> Js.Dict.entries |> E.A.fmap(((key, value)) => (key, run(value))) |> Js.Dict.fromArray, ); }; let normal: array(arg) => result(SymbolicDist.bigDist, string) = fun | [|Value(mean), Value(stdev)|] => Ok(`Simple(`Normal({mean, stdev}))) | _ => Error("Wrong number of variables in normal distribution"); let lognormal: array(arg) => result(SymbolicDist.bigDist, string) = fun | [|Value(mu), Value(sigma)|] => Ok(`Simple(`Lognormal({mu, sigma}))) | [|Object(o)|] => { let g = Js.Dict.get(o); switch (g("mean"), g("stdev"), g("mu"), g("sigma")) { | (Some(Value(mean)), Some(Value(stdev)), _, _) => Ok(`Simple(SymbolicDist.Lognormal.fromMeanAndStdev(mean, stdev))) | (_, _, Some(Value(mu)), Some(Value(sigma))) => Ok(`Simple(`Lognormal({mu, sigma}))) | _ => Error("Lognormal distribution would need mean and stdev") }; } | _ => Error("Wrong number of variables in lognormal distribution"); let to_: array(arg) => result(SymbolicDist.bigDist, string) = fun | [|Value(low), Value(high)|] when low < high => { Ok(`Simple(SymbolicDist.Lognormal.from90PercentCI(low, high))); } | [|Value(_), Value(_)|] => Error("Low value must be less than high value.") | _ => Error("Wrong number of variables in lognormal distribution"); let uniform: array(arg) => result(SymbolicDist.bigDist, string) = fun | [|Value(low), Value(high)|] => Ok(`Simple(`Uniform({low, high}))) | _ => Error("Wrong number of variables in lognormal distribution"); let beta: array(arg) => result(SymbolicDist.bigDist, string) = fun | [|Value(alpha), Value(beta)|] => Ok(`Simple(`Beta({alpha, beta}))) | _ => Error("Wrong number of variables in lognormal distribution"); let multiModal = ( args: array(result(SymbolicDist.bigDist, string)), weights: array(float), ) => { let dists = args |> E.A.fmap( fun | Ok(`Simple(n)) => Some(n) | _ => None, ) |> E.A.O.concatSomes; switch (dists |> E.A.length) { | 0 => Error("Multimodals need at least one input") | _ => dists |> E.A.fmapi((index, item) => (item, weights |> E.A.get(_, index) |> E.O.default(1.0)) ) |> (r => Ok(`PointwiseCombination(r))) }; }; let rec functionParser = (r): result(SymbolicDist.bigDist, string) => r |> ( fun | Fn({name: "normal", args}) => normal(args) | Fn({name: "lognormal", args}) => lognormal(args) | Fn({name: "uniform", args}) => uniform(args) | Fn({name: "beta", args}) => beta(args) | Fn({name: "to", args}) => to_(args) | Fn({name: "mm", args}) => { let dists = args |> E.A.fmap(functionParser); let weights = args |> E.A.last |> E.O.bind( _, fun | Array(values) => Some(values) | _ => None, ) |> E.A.O.defaultEmpty |> E.A.fmap( fun | Value(r) => Some(r) | _ => None, ) |> E.A.O.concatSomes; multiModal(dists, weights); } | Fn({name}) => Error(name ++ ": function not supported") | _ => Error("This type not currently supported") ); let topLevel = (r): result(SymbolicDist.bigDist, string) => r |> ( fun | Fn(_) => functionParser(r) | Value(_) => Error("Top level can't be value") | Array(_) => Error("Array not valid as top level") | Symbol(_) => Error("Symbol not valid as top level") | Object(_) => Error("Object not valid as top level") ); let run = (r): result(SymbolicDist.bigDist, string) => r |> MathAdtCleaner.run |> topLevel; }; let fromString = str => { let mathJsToJson = Mathjs.parseMath(str); let mathJsParse = E.R.bind(mathJsToJson, r => switch (MathJsonToMathJsAdt.run(r)) { | Some(r) => Ok(r) | None => Error("MathJsParse Error") } ); let value = E.R.bind(mathJsParse, MathAdtToDistDst.run); Js.log4("fromString", mathJsToJson, mathJsParse, value); value; };