open Jest open Expect let env: DistributionOperation.env = { sampleCount: 10000, xyPointLength: 1000, } let {toFloat, toDist, toString, toError, fmap} = module(DistributionOperation.Output) let run = DistributionOperation.run(~env) let outputMap = fmap(~env) let toExt: option<'a> => 'a = E.O.toExt( "Should be impossible to reach (This error is in test file)", ) let unpackFloat = x => x -> toFloat -> toExt let mkNormal = (mean, stdev) => GenericDist_Types.Symbolic(#Normal({mean: mean, stdev: stdev})) let mkBeta = (alpha, beta) => GenericDist_Types.Symbolic(#Beta({alpha: alpha, beta: beta})) let mkExponential = rate => GenericDist_Types.Symbolic(#Exponential({rate: rate})) let mkUniform = (low, high) => GenericDist_Types.Symbolic(#Uniform({low: low, high: high})) let mkCauchy = (local, scale) => GenericDist_Types.Symbolic(#Cauchy({local: local, scale: scale})) let mkLognormal = (mu, sigma) => GenericDist_Types.Symbolic(#Lognormal({mu: mu, sigma: sigma})) describe("mixture", () => { testAll("fair mean of two normal distributions", list{(0.0, 1e2), (-1e1, -1e-4), (-1e1, 1e2), (-1e1, 1e1)}, tup => { // should be property let (mean1, mean2) = tup let theMean = { run(Mixture([(mkNormal(mean1, 9e-1), 0.5), (mkNormal(mean2, 9e-1), 0.5)])) -> outputMap(FromDist(ToFloat(#Mean))) } theMean -> unpackFloat -> expect -> toBeSoCloseTo((mean1 +. mean2) /. 2.0, ~digits=-1) // the .56 is arbitrary? should be 15.0 with a looser tolerance? }) testAll( "weighted mean of a beta and an exponential", // This would not survive property testing, it was easy for me to find cases that NaN'd out. list{((128.0, 1.0), 2.0), ((2e-1, 64.0), 16.0), ((1e0, 1e0), 64.0)}, tup => { let (betaParams, rate) = tup let (alpha, beta) = betaParams let theMean = { run(Mixture( [ (mkBeta(alpha, beta), 0.25), (mkExponential(rate), 0.75) ] )) -> outputMap(FromDist(ToFloat(#Mean))) } theMean -> unpackFloat -> expect -> toBeSoCloseTo( 0.25 *. 1.0 /. (1.0 +. beta /. alpha) +. 0.75 *. 1.0 /. rate, ~digits=-1 ) } ) testAll( "weighted mean of lognormal and uniform", // Would not survive property tests: very easy to find cases that NaN out. list{((-1e2,1e1), (2e0,1e0)), ((-1e-16,1e-16), (1e-8,1e0)), ((0.0,1e0), (1e0,1e-2))}, tup => { let (uniformParams, lognormalParams) = tup let (low, high) = uniformParams let (mu, sigma) = lognormalParams let theMean = { run(Mixture([(mkUniform(low, high), 0.6), (mkLognormal(mu, sigma), 0.4)])) -> outputMap(FromDist(ToFloat(#Mean))) } theMean -> unpackFloat -> expect -> toBeSoCloseTo(0.6 *. (low +. high) /. 2.0 +. 0.4 *. (mu +. sigma ** 2.0 /. 2.0), ~digits=-1) } ) })