--- title: "Functions Reference" sidebar_position: 7 --- import { SquiggleEditor } from "../../src/components/SquiggleEditor"; ## Inventory distributions We provide starter distributions, computed symbolically. ### Normal distribution The `normal(mean, sd)` function creates a normal distribution with the given mean and standard deviation. #### Validity - `sd > 0` ### Uniform distribution The `uniform(low, high)` function creates a uniform distribution between the two given numbers. #### Validity - `low < high` ### Lognormal distribution The `lognormal(mu, sigma)` returns the log of a normal distribution with parameters `mu` and `sigma`. The log of `lognormal(mu, sigma)` is a normal distribution with mean `mu` and standard deviation `sigma`. An alternative format is also available. The `to` notation creates a lognormal distribution with a 90% confidence interval between the two numbers. We add this convenience as lognormal distributions are commonly used in practice. #### Future feature: Furthermore, it's also possible to create a lognormal from it's actual mean and standard deviation, using `lognormalFromMeanAndStdDev`. TODO: interpreter/parser doesn't provide this in current `develop` branch #### Validity - `sigma > 0` - In `x to y` notation, `x < y` ### Beta distribution The `beta(a, b)` function creates a beta distribution with parameters `a` and `b`: #### Validity - `a > 0` - `b > 0` - Empirically, we have noticed that numerical instability arises when `a < 1` or `b < 1` ### Exponential distribution The `exponential(rate)` function creates an exponential distribution with the given rate. #### Validity - `rate > 0` ### Triangular distribution The `triangular(a,b,c)` function creates a triangular distribution with lower bound `a`, mode `b` and upper bound `c`. #### Validity - `a < b < c` ### Scalar (constant dist) Squiggle, when the context is right, automatically casts a float to a constant distribution. ## `fromSamples` The last distribution constructor takes an array of samples and constructs a sample set distribution. #### Validity For `fromSamples(xs)`, - `xs.length > 5` - Strictly every element of `xs` must be a number. ## Operating on distributions Here are the ways we combine distributions. ### Mixture of distributions The `mixture` function combines 2 or more other distributions to create a weighted combination of the two. The first positional arguments represent the distributions to be combined, and the last argument is how much to weigh every distribution in the combination. It's possible to create discrete distributions using this method. As well as mixed distributions: An alias of `mixture` is `mx` #### Validity Using javascript's variable arguments notation, consider `mx(...dists, weights)`: - `dists.length == weights.length` ### Addition A horizontal right shift ### Subtraction A horizontal left shift ### Multiplication TODO: provide intuition pump for the semantics We also provide concatenation of two distributions as a syntax sugar for `*` ### Division TODO: provide intuition pump for the semantics ### Exponentiation TODO: provide intuition pump for the semantics ### Taking the base `e` exponential ### Taking logarithms Base `x` #### Validity - `x` must be a scalar - See [the current discourse](https://github.com/quantified-uncertainty/squiggle/issues/304) ### Pointwise addition **Pointwise operations are done with `PointSetDist` internals rather than `SampleSetDist` internals**. TODO: this isn't in the new interpreter/parser yet. ### Pointwise subtraction TODO: this isn't in the new interpreter/parser yet. ### Pointwise multiplication ### Pointwise division ### Pointwise exponentiation ## Standard functions on distributions ### Probability density function The `pdf(dist, x)` function returns the density of a distribution at the given point x. #### Validity - `x` must be a scalar - `dist` must be a distribution ### Cumulative density function The `cdf(dist, x)` gives the cumulative probability of the distribution or all values lower than x. It is the inverse of `inv`. #### Validity - `x` must be a scalar - `dist` must be a distribution ### Inverse CDF The `inv(dist, prob)` gives the value x or which the probability for all values lower than x is equal to prob. It is the inverse of `cdf`. #### Validity - `prob` must be a scalar (please only put it in `(0,1)`) - `dist` must be a distribution ### Mean The `mean(distribution)` function gives the mean (expected value) of a distribution. ### Sampling a distribution The `sample(distribution)` samples a given distribution. ## Converting between distribution formats Recall the [three formats of distributions](https://develop--squiggle-documentation.netlify.app/docs/Discussions/Three-Types-Of-Distributions). We can force any distribution into `SampleSet` format Or `PointSet` format ### `toSampleSet` has two signatures Above, we saw the unary `toSampleSet`, which uses an internal hardcoded number of samples. If you'd like to provide the number of samples, it has a binary signature as well (floored) #### Validity - Second argument to `toSampleSet` must be a number. ## Normalization Some distribution operations (like horizontal shift) return an unnormalized distriibution. We provide a `normalize` function #### Validity - Input to `normalize` must be a dist We provide a predicate `isNormalized`, for when we have simple control flow #### Validity - Input to `isNormalized` must be a dist ## `inspect` You may like to debug by right clicking your browser and using the _inspect_ functionality on the webpage, and viewing the _console_ tab. Then, wrap your squiggle output with `inspect` to log an internal representation. Save for a logging side effect, `inspect` does nothing to input and returns it. ## Truncate You can cut off from the left You can cut off from the right You can cut off from both sides