// todo: rename to SymbolicParser module MathJsonToMathJsAdt = { type arg = | Symbol(string) | Value(float) | Fn(fn) | Array(array(arg)) | Object(Js.Dict.t(arg)) and fn = { name: string, args: array(arg), }; let rec run = (j: Js.Json.t) => Json.Decode.( switch (field("mathjs", string, j)) { | "FunctionNode" => let args = j |> field("args", array(run)); Some( Fn({ name: j |> field("fn", field("name", string)), args: args |> E.A.O.concatSomes, }), ); | "OperatorNode" => let args = j |> field("args", array(run)); Some( Fn({ name: j |> field("fn", string), args: args |> E.A.O.concatSomes, }), ); | "ConstantNode" => optional(field("value", Json.Decode.float), j) |> E.O.fmap(r => Value(r)) | "ParenthesisNode" => j |> field("content", run) | "ObjectNode" => let properties = j |> field("properties", dict(run)); Js.Dict.entries(properties) |> E.A.fmap(((key, value)) => value |> E.O.fmap(v => (key, v))) |> E.A.O.concatSomes |> Js.Dict.fromArray |> (r => Some(Object(r))); | "ArrayNode" => let items = field("items", array(run), j); Some(Array(items |> E.A.O.concatSomes)); | "SymbolNode" => Some(Symbol(field("name", string, j))) | n => Js.log3("Couldn't parse mathjs node", j, n); None; } ); }; module MathAdtToDistDst = { open MathJsonToMathJsAdt; module MathAdtCleaner = { let transformWithSymbol = (f: float, s: string) => switch (s) { | "K" | "k" => f *. 1000. | "M" | "m" => f *. 1000000. | "B" | "b" => f *. 1000000000. | "T" | "t" => f *. 1000000000000. | _ => f }; let rec run = fun | Fn({name: "multiply", args: [|Value(f), Symbol(s)|]}) => Value(transformWithSymbol(f, s)) | Fn({name: "unaryMinus", args: [|Value(f)|]}) => Value((-1.0) *. f) | Fn({name, args}) => Fn({name, args: args |> E.A.fmap(run)}) | Array(args) => Array(args |> E.A.fmap(run)) | Symbol(s) => Symbol(s) | Value(v) => Value(v) | Object(v) => Object( v |> Js.Dict.entries |> E.A.fmap(((key, value)) => (key, run(value))) |> Js.Dict.fromArray, ); }; let normal: array(arg) => result(TreeNode.treeNode, string) = fun | [|Value(mean), Value(stdev)|] => Ok(`DistData(`Symbolic(`Normal({mean, stdev})))) | _ => Error("Wrong number of variables in normal distribution"); let lognormal: array(arg) => result(TreeNode.treeNode, string) = fun | [|Value(mu), Value(sigma)|] => Ok(`DistData(`Symbolic(`Lognormal({mu, sigma})))) | [|Object(o)|] => { let g = Js.Dict.get(o); switch (g("mean"), g("stdev"), g("mu"), g("sigma")) { | (Some(Value(mean)), Some(Value(stdev)), _, _) => Ok(`DistData(`Symbolic(SymbolicDist.Lognormal.fromMeanAndStdev(mean, stdev)))) | (_, _, Some(Value(mu)), Some(Value(sigma))) => Ok(`DistData(`Symbolic(`Lognormal({mu, sigma})))) | _ => Error("Lognormal distribution would need mean and stdev") }; } | _ => Error("Wrong number of variables in lognormal distribution"); let to_: array(arg) => result(TreeNode.treeNode, string) = fun | [|Value(low), Value(high)|] when low <= 0.0 && low < high=> { Ok(`DistData(`Symbolic(SymbolicDist.Normal.from90PercentCI(low, high)))); } | [|Value(low), Value(high)|] when low < high => { Ok(`DistData(`Symbolic(SymbolicDist.Lognormal.from90PercentCI(low, high)))); } | [|Value(_), Value(_)|] => Error("Low value must be less than high value.") | _ => Error("Wrong number of variables in lognormal distribution"); let uniform: array(arg) => result(TreeNode.treeNode, string) = fun | [|Value(low), Value(high)|] => Ok(`DistData(`Symbolic(`Uniform({low, high})))) | _ => Error("Wrong number of variables in lognormal distribution"); let beta: array(arg) => result(TreeNode.treeNode, string) = fun | [|Value(alpha), Value(beta)|] => Ok(`DistData(`Symbolic(`Beta({alpha, beta})))) | _ => Error("Wrong number of variables in lognormal distribution"); let exponential: array(arg) => result(TreeNode.treeNode, string) = fun | [|Value(rate)|] => Ok(`DistData(`Symbolic(`Exponential({rate: rate})))) | _ => Error("Wrong number of variables in Exponential distribution"); let cauchy: array(arg) => result(TreeNode.treeNode, string) = fun | [|Value(local), Value(scale)|] => Ok(`DistData(`Symbolic(`Cauchy({local, scale})))) | _ => Error("Wrong number of variables in cauchy distribution"); let triangular: array(arg) => result(TreeNode.treeNode, string) = fun | [|Value(low), Value(medium), Value(high)|] => Ok(`DistData(`Symbolic(`Triangular({low, medium, high})))) | _ => Error("Wrong number of variables in triangle distribution"); let multiModal = ( args: array(result(TreeNode.treeNode, string)), weights: option(array(float)), ) => { let weights = weights |> E.O.default([||]); let dists = args |> E.A.fmap( fun | Ok(a) => a | Error(e) => Error(e) ); let firstWithError = dists |> Belt.Array.getBy(_, Belt.Result.isError); let withoutErrors = dists |> E.A.fmap(E.R.toOption) |> E.A.O.concatSomes; switch (firstWithError) { | Some(Error(e)) => Error(e) | None when withoutErrors |> E.A.length == 0 => Error("Multimodals need at least one input") | _ => { let components = withoutErrors |> E.A.fmapi((index, t) => { let w = weights |> E.A.get(_, index) |> E.O.default(1.0); `Operation(`ScaleBy(`Multiply, t, `DistData(`Symbolic(`Float(w))))) }); let pointwiseSum = components |> Js.Array.sliceFrom(1) |> E.A.fold_left((acc, x) => { `PointwiseSum(acc, x) }, E.A.unsafe_get(components, 0)) Ok(`Normalize(pointwiseSum)) } }; }; let arrayParser = (args:array(arg)):result(TreeNode.treeNode, string) => { let samples = args |> E.A.fmap( fun | Value(n) => Some(n) | _ => None ) |> E.A.O.concatSomes let outputs = Samples.T.fromSamples(samples); let pdf = outputs.shape |> E.O.bind(_,Distributions.Shape.T.toContinuous); let shape = pdf |> E.O.fmap(pdf => { let _pdf = Distributions.Continuous.T.normalize(pdf); let cdf = Distributions.Continuous.T.integral(~cache=None, _pdf); SymbolicDist.ContinuousShape.make(_pdf, cdf) }); switch(shape){ | Some(s) => Ok(`DistData(`Symbolic(`ContinuousShape(s)))) | None => Error("Rendering did not work") } } let rec functionParser = (r): result(TreeNode.treeNode, string) => r |> ( fun | Fn({name: "normal", args}) => normal(args) | Fn({name: "lognormal", args}) => lognormal(args) | Fn({name: "uniform", args}) => uniform(args) | Fn({name: "beta", args}) => beta(args) | Fn({name: "to", args}) => to_(args) | Fn({name: "exponential", args}) => exponential(args) | Fn({name: "cauchy", args}) => cauchy(args) | Fn({name: "triangular", args}) => triangular(args) | Value(f) => Ok(`DistData(`Symbolic(`Float(f)))) | Fn({name: "mm", args}) => { let weights = args |> E.A.last |> E.O.bind( _, fun | Array(values) => Some(values) | _ => None, ) |> E.O.fmap(o => o |> E.A.fmap( fun | Value(r) => Some(r) | _ => None, ) |> E.A.O.concatSomes ); let possibleDists = E.O.isSome(weights) ? Belt.Array.slice(args, ~offset=0, ~len=E.A.length(args) - 1) : args; let dists = possibleDists |> E.A.fmap(functionParser); multiModal(dists, weights); } | Fn({name: "add", args}) => { args |> E.A.fmap(functionParser) |> (fun | [|Ok(l), Ok(r)|] => Ok(`Combination(l, r, `AddOperation)) | _ => Error("Addition needs two operands")) } | Fn({name: "subtract", args}) => { args |> E.A.fmap(functionParser) |> (fun | [|Ok(l), Ok(r)|] => Ok(`Combination(l, r, `SubtractOperation)) | _ => Error("Subtraction needs two operands")) } | Fn({name: "multiply", args}) => { args |> E.A.fmap(functionParser) |> (fun | [|Ok(l), Ok(r)|] => Ok(`Combination(l, r, `MultiplyOperation)) | _ => Error("Multiplication needs two operands")) } | Fn({name: "divide", args}) => { args |> E.A.fmap(functionParser) |> (fun | [|Ok(l), Ok(`DistData(`Symbolic(`Float(0.0))))|] => Error("Division by zero") | [|Ok(l), Ok(r)|] => Ok(`Combination(l, r, `DivideOperation)) | _ => Error("Division needs two operands")) } | Fn({name: "pow", args}) => { args |> E.A.fmap(functionParser) |> (fun | [|Ok(l), Ok(r)|] => Ok(`Combination(l, r, `ExponentiateOperation)) | _ => Error("Exponentiations needs two operands")) } | Fn({name: "leftTruncate", args}) => { args |> E.A.fmap(functionParser) |> (fun | [|Ok(l), Ok(`DistData(`Symbolic(`Float(r))))|] => Ok(`LeftTruncate(l, r)) | _ => Error("leftTruncate needs two arguments: the expression and the cutoff")) } | Fn({name: "rightTruncate", args}) => { args |> E.A.fmap(functionParser) |> (fun | [|Ok(l), Ok(`DistData(`Symbolic(`Float(r))))|] => Ok(`RightTruncate(l, r)) | _ => Error("rightTruncate needs two arguments: the expression and the cutoff")) } | Fn({name}) => Error(name ++ ": function not supported") | _ => { Error("This type not currently supported"); } ); let topLevel = (r): result(TreeNode.treeNode, string) => r |> ( fun | Fn(_) => functionParser(r) | Value(r) => Ok(`DistData(`Symbolic(`Float(r)))) | Array(r) => arrayParser(r) | Symbol(_) => Error("Symbol not valid as top level") | Object(_) => Error("Object not valid as top level") ); let run = (r): result(TreeNode.treeNode, string) => r |> MathAdtCleaner.run |> topLevel; }; let fromString = str => { /* We feed the user-typed string into Mathjs.parseMath, which returns a JSON with (hopefully) a single-element array. This array element is the top-level node of a nested-object tree representing the functions/arguments/values/etc. in the string. The function MathJsonToMathJsAdt then recursively unpacks this JSON into a typed data structure we can use. Inside of this function, MathAdtToDistDst is called whenever a distribution function is encountered. */ let mathJsToJson = Mathjs.parseMath(str); let mathJsParse = E.R.bind(mathJsToJson, r => { switch (MathJsonToMathJsAdt.run(r)) { | Some(r) => Ok(r) | None => Error("MathJsParse Error") } }); let value = E.R.bind(mathJsParse, MathAdtToDistDst.run); value; };