open Jest open Expect open TestHelpers describe("kl divergence on continuous distributions", () => { let klDivergence = DistributionOperation.Constructors.klDivergence(~env) exception KlFailed let testUniform = (lowAnswer, highAnswer, lowPrediction, highPrediction) => { test("of two uniforms is equal to the analytic expression", () => { let answer = uniformMakeR(lowAnswer, highAnswer)->E.R2.errMap(s => DistributionTypes.ArgumentError(s)) let prediction = uniformMakeR( lowPrediction, highPrediction, )->E.R2.errMap(s => DistributionTypes.ArgumentError(s)) // integral along the support of the answer of answer.pdf(x) times log of prediction.pdf(x) divided by answer.pdf(x) dx let analyticalKl = Js.Math.log((highPrediction -. lowPrediction) /. (highAnswer -. lowAnswer)) let kl = E.R.liftJoin2(klDivergence, prediction, answer) switch kl { | Ok(kl') => kl'->expect->toBeCloseTo(analyticalKl) | Error(err) => { Js.Console.log(DistributionTypes.Error.toString(err)) raise(KlFailed) } } }) } // The pair on the right (the answer) can be wider than the pair on the left (the prediction), but not the other way around. testUniform(0.0, 1.0, -1.0, 2.0) testUniform(0.0, 1.0, 0.0, 2.0) // equal left endpoints testUniform(0.0, 1.0, -1.0, 1.0) // equal rightendpoints testUniform(0.0, 1e1, 0.0, 1e1) // equal (klDivergence = 0) // testUniform(-1.0, 1.0, 0.0, 2.0) test("of two normals is equal to the formula", () => { // This test case comes via Nuño https://github.com/quantified-uncertainty/squiggle/issues/433 let mean1 = 4.0 let mean2 = 1.0 let stdev1 = 4.0 let stdev2 = 1.0 let prediction = normalMakeR(mean1, stdev1)->E.R2.errMap(s => DistributionTypes.ArgumentError(s)) let answer = normalMakeR(mean2, stdev2)->E.R2.errMap(s => DistributionTypes.ArgumentError(s)) // https://stats.stackexchange.com/questions/7440/kl-divergence-between-two-univariate-gaussians let analyticalKl = Js.Math.log(stdev1 /. stdev2) +. (stdev2 ** 2.0 +. (mean2 -. mean1) ** 2.0) /. (2.0 *. stdev1 ** 2.0) -. 0.5 let kl = E.R.liftJoin2(klDivergence, prediction, answer) switch kl { | Ok(kl') => kl'->expect->toBeCloseTo(analyticalKl) | Error(err) => { Js.Console.log(DistributionTypes.Error.toString(err)) raise(KlFailed) } } }) }) describe("kl divergence on discrete distributions", () => { let klDivergence = DistributionOperation.Constructors.klDivergence(~env) let mixture = a => DistributionTypes.DistributionOperation.Mixture(a) exception KlFailed exception MixtureFailed let float1 = 1.0 let float2 = 2.0 let float3 = 3.0 let point1 = mkDirac(float1) let point2 = mkDirac(float2) let point3 = mkDirac(float3) test("finite kl divergence", () => { let answer = [(point1, 1e0), (point2, 1e0)]->mixture->run let prediction = [(point1, 1e0), (point2, 1e0), (point3, 1e0)]->mixture->run let kl = switch (prediction, answer) { | (Dist(prediction'), Dist(answer')) => klDivergence(prediction', answer') | _ => raise(MixtureFailed) } let analyticalKl = Js.Math.log(2.0 /. 3.0) switch kl { | Ok(kl') => kl'->expect->toBeCloseTo(analyticalKl) | Error(err) => Js.Console.log(DistributionTypes.Error.toString(err)) raise(KlFailed) } }) test("infinite kl divergence", () => { let prediction = [(point1, 1e0), (point2, 1e0)]->mixture->run let answer = [(point1, 1e0), (point2, 1e0), (point3, 1e0)]->mixture->run let kl = switch (prediction, answer) { | (Dist(prediction'), Dist(answer')) => klDivergence(prediction', answer') | _ => raise(MixtureFailed) } switch kl { | Ok(kl') => kl'->expect->toEqual(neg_infinity) | Error(err) => Js.Console.log(DistributionTypes.Error.toString(err)) raise(KlFailed) } }) }) describe("combine along support test", () => { // This tests the version of the function that we're NOT using. Haven't deleted the test in case we use the code later. test("combine along support test", _ => { let combineAlongSupportOfSecondArgument = XYShape.PointwiseCombination.combineAlongSupportOfSecondArgument0 let lowAnswer = 0.0 let highAnswer = 1.0 let lowPrediction = 0.0 let highPrediction = 2.0 let answer = uniformMakeR(lowAnswer, highAnswer)->E.R2.errMap(s => DistributionTypes.ArgumentError(s)) let prediction = uniformMakeR(lowPrediction, highPrediction)->E.R2.errMap(s => DistributionTypes.ArgumentError( s, )) let answerWrapped = E.R.fmap(a => run(FromDist(ToDist(ToPointSet), a)), answer) let predictionWrapped = E.R.fmap(a => run(FromDist(ToDist(ToPointSet), a)), prediction) let interpolator = XYShape.XtoY.continuousInterpolator(#Stepwise, #UseZero) let integrand = PointSetDist_Scoring.KLDivergence.integrand let result = switch (answerWrapped, predictionWrapped) { | (Ok(Dist(PointSet(Continuous(a)))), Ok(Dist(PointSet(Continuous(b))))) => Some(combineAlongSupportOfSecondArgument(integrand, interpolator, a.xyShape, b.xyShape)) | _ => None } result ->expect ->toEqual( Some( Ok({ xs: [ 0.0, MagicNumbers.Epsilon.ten, 2.0 *. MagicNumbers.Epsilon.ten, 1.0 -. MagicNumbers.Epsilon.ten, 1.0, 1.0 +. MagicNumbers.Epsilon.ten, ], ys: [ -0.34657359027997264, -0.34657359027997264, -0.34657359027997264, -0.34657359027997264, -0.34657359027997264, infinity, ], }), ), ) }) })