open SymbolicTypes; module Exponential = { type t = exponential; let pdf = (x, t: t) => Jstat.exponential##pdf(x, t.rate); let cdf = (x, t: t) => Jstat.exponential##cdf(x, t.rate); let inv = (p, t: t) => Jstat.exponential##inv(p, t.rate); let sample = (t: t) => Jstat.exponential##sample(t.rate); let mean = (t: t) => Ok(Jstat.exponential##mean(t.rate)); let toString = ({rate}: t) => {j|Exponential($rate)|j}; }; module Cauchy = { type t = cauchy; let pdf = (x, t: t) => Jstat.cauchy##pdf(x, t.local, t.scale); let cdf = (x, t: t) => Jstat.cauchy##cdf(x, t.local, t.scale); let inv = (p, t: t) => Jstat.cauchy##inv(p, t.local, t.scale); let sample = (t: t) => Jstat.cauchy##sample(t.local, t.scale); let mean = (_: t) => Error("Cauchy distributions have no mean value."); let toString = ({local, scale}: t) => {j|Cauchy($local, $scale)|j}; }; module Triangular = { type t = triangular; let pdf = (x, t: t) => Jstat.triangular##pdf(x, t.low, t.high, t.medium); let cdf = (x, t: t) => Jstat.triangular##cdf(x, t.low, t.high, t.medium); let inv = (p, t: t) => Jstat.triangular##inv(p, t.low, t.high, t.medium); let sample = (t: t) => Jstat.triangular##sample(t.low, t.high, t.medium); let mean = (t: t) => Ok(Jstat.triangular##mean(t.low, t.high, t.medium)); let toString = ({low, medium, high}: t) => {j|Triangular($low, $medium, $high)|j}; }; module Normal = { type t = normal; let pdf = (x, t: t) => Jstat.normal##pdf(x, t.mean, t.stdev); let cdf = (x, t: t) => Jstat.normal##cdf(x, t.mean, t.stdev); let from90PercentCI = (low, high) => { let mean = E.A.Floats.mean([|low, high|]); let stdev = (high -. low) /. (2. *. 1.644854); `Normal({mean, stdev}); }; let inv = (p, t: t) => Jstat.normal##inv(p, t.mean, t.stdev); let sample = (t: t) => Jstat.normal##sample(t.mean, t.stdev); let mean = (t: t) => Ok(Jstat.normal##mean(t.mean, t.stdev)); let toString = ({mean, stdev}: t) => {j|Normal($mean,$stdev)|j}; let add = (n1: t, n2: t) => { let mean = n1.mean +. n2.mean; let stdev = sqrt(n1.stdev ** 2. +. n2.stdev ** 2.); `Normal({mean, stdev}); }; let subtract = (n1: t, n2: t) => { let mean = n1.mean -. n2.mean; let stdev = sqrt(n1.stdev ** 2. +. n2.stdev ** 2.); `Normal({mean, stdev}); }; // TODO: is this useful here at all? would need the integral as well ... let pointwiseProduct = (n1: t, n2: t) => { let mean = (n1.mean *. n2.stdev ** 2. +. n2.mean *. n1.stdev ** 2.) /. (n1.stdev ** 2. +. n2.stdev ** 2.); let stdev = 1. /. (1. /. n1.stdev ** 2. +. 1. /. n2.stdev ** 2.); `Normal({mean, stdev}); }; let operate = (operation: Operation.Algebraic.t, n1: t, n2: t) => switch (operation) { | `Add => Some(add(n1, n2)) | `Subtract => Some(subtract(n1, n2)) | _ => None }; }; module Beta = { type t = beta; let pdf = (x, t: t) => Jstat.beta##pdf(x, t.alpha, t.beta); let cdf = (x, t: t) => Jstat.beta##cdf(x, t.alpha, t.beta); let inv = (p, t: t) => Jstat.beta##inv(p, t.alpha, t.beta); let sample = (t: t) => Jstat.beta##sample(t.alpha, t.beta); let mean = (t: t) => Ok(Jstat.beta##mean(t.alpha, t.beta)); let toString = ({alpha, beta}: t) => {j|Beta($alpha,$beta)|j}; }; module Lognormal = { type t = lognormal; let pdf = (x, t: t) => Jstat.lognormal##pdf(x, t.mu, t.sigma); let cdf = (x, t: t) => Jstat.lognormal##cdf(x, t.mu, t.sigma); let inv = (p, t: t) => Jstat.lognormal##inv(p, t.mu, t.sigma); let mean = (t: t) => Ok(Jstat.lognormal##mean(t.mu, t.sigma)); let sample = (t: t) => Jstat.lognormal##sample(t.mu, t.sigma); let toString = ({mu, sigma}: t) => {j|Lognormal($mu,$sigma)|j}; let from90PercentCI = (low, high) => { let logLow = Js.Math.log(low); let logHigh = Js.Math.log(high); let mu = E.A.Floats.mean([|logLow, logHigh|]); let sigma = (logHigh -. logLow) /. (2.0 *. 1.645); `Lognormal({mu, sigma}); }; let fromMeanAndStdev = (mean, stdev) => { let variance = Js.Math.pow_float(~base=stdev, ~exp=2.0); let meanSquared = Js.Math.pow_float(~base=mean, ~exp=2.0); let mu = Js.Math.log(mean) -. 0.5 *. Js.Math.log(variance /. meanSquared +. 1.0); let sigma = Js.Math.pow_float( ~base=Js.Math.log(variance /. meanSquared +. 1.0), ~exp=0.5, ); `Lognormal({mu, sigma}); }; let multiply = (l1, l2) => { let mu = l1.mu +. l2.mu; let sigma = l1.sigma +. l2.sigma; `Lognormal({mu, sigma}); }; let divide = (l1, l2) => { let mu = l1.mu -. l2.mu; let sigma = l1.sigma +. l2.sigma; `Lognormal({mu, sigma}); }; let operate = (operation: Operation.Algebraic.t, n1: t, n2: t) => switch (operation) { | `Multiply => Some(multiply(n1, n2)) | `Divide => Some(divide(n1, n2)) | _ => None }; }; module Uniform = { type t = uniform; let pdf = (x, t: t) => Jstat.uniform##pdf(x, t.low, t.high); let cdf = (x, t: t) => Jstat.uniform##cdf(x, t.low, t.high); let inv = (p, t: t) => Jstat.uniform##inv(p, t.low, t.high); let sample = (t: t) => Jstat.uniform##sample(t.low, t.high); let mean = (t: t) => Ok(Jstat.uniform##mean(t.low, t.high)); let toString = ({low, high}: t) => {j|Uniform($low,$high)|j}; let truncate = (low, high, t: t): t => { let newLow = max(E.O.default(neg_infinity, low), t.low); let newHigh = min(E.O.default(infinity, high), t.high); {low: newLow, high: newHigh}; }; }; module Float = { type t = float; let pdf = (x, t: t) => x == t ? 1.0 : 0.0; let cdf = (x, t: t) => x >= t ? 1.0 : 0.0; let inv = (p, t: t) => p < t ? 0.0 : 1.0; let mean = (t: t) => Ok(t); let sample = (t: t) => t; let toString = Js.Float.toString; }; module T = { let minCdfValue = 0.0001; let maxCdfValue = 0.9999; let pdf = (x, dist) => switch (dist) { | `Normal(n) => Normal.pdf(x, n) | `Triangular(n) => Triangular.pdf(x, n) | `Exponential(n) => Exponential.pdf(x, n) | `Cauchy(n) => Cauchy.pdf(x, n) | `Lognormal(n) => Lognormal.pdf(x, n) | `Uniform(n) => Uniform.pdf(x, n) | `Beta(n) => Beta.pdf(x, n) | `Float(n) => Float.pdf(x, n) }; let cdf = (x, dist) => switch (dist) { | `Normal(n) => Normal.cdf(x, n) | `Triangular(n) => Triangular.cdf(x, n) | `Exponential(n) => Exponential.cdf(x, n) | `Cauchy(n) => Cauchy.cdf(x, n) | `Lognormal(n) => Lognormal.cdf(x, n) | `Uniform(n) => Uniform.cdf(x, n) | `Beta(n) => Beta.cdf(x, n) | `Float(n) => Float.cdf(x, n) }; let inv = (x, dist) => switch (dist) { | `Normal(n) => Normal.inv(x, n) | `Triangular(n) => Triangular.inv(x, n) | `Exponential(n) => Exponential.inv(x, n) | `Cauchy(n) => Cauchy.inv(x, n) | `Lognormal(n) => Lognormal.inv(x, n) | `Uniform(n) => Uniform.inv(x, n) | `Beta(n) => Beta.inv(x, n) | `Float(n) => Float.inv(x, n) }; let sample: symbolicDist => float = fun | `Normal(n) => Normal.sample(n) | `Triangular(n) => Triangular.sample(n) | `Exponential(n) => Exponential.sample(n) | `Cauchy(n) => Cauchy.sample(n) | `Lognormal(n) => Lognormal.sample(n) | `Uniform(n) => Uniform.sample(n) | `Beta(n) => Beta.sample(n) | `Float(n) => Float.sample(n); let doN = (n, fn) => { let items = Belt.Array.make(n, 0.0); for (x in 0 to n - 1) { let _ = Belt.Array.set(items, x, fn()); (); }; items; }; let sampleN = (n, dist) => { doN(n, () => sample(dist)); }; let toString: symbolicDist => string = fun | `Triangular(n) => Triangular.toString(n) | `Exponential(n) => Exponential.toString(n) | `Cauchy(n) => Cauchy.toString(n) | `Normal(n) => Normal.toString(n) | `Lognormal(n) => Lognormal.toString(n) | `Uniform(n) => Uniform.toString(n) | `Beta(n) => Beta.toString(n) | `Float(n) => Float.toString(n); let min: symbolicDist => float = fun | `Triangular({low}) => low | `Exponential(n) => Exponential.inv(minCdfValue, n) | `Cauchy(n) => Cauchy.inv(minCdfValue, n) | `Normal(n) => Normal.inv(minCdfValue, n) | `Lognormal(n) => Lognormal.inv(minCdfValue, n) | `Uniform({low}) => low | `Beta(n) => Beta.inv(minCdfValue, n) | `Float(n) => n; let max: symbolicDist => float = fun | `Triangular(n) => n.high | `Exponential(n) => Exponential.inv(maxCdfValue, n) | `Cauchy(n) => Cauchy.inv(maxCdfValue, n) | `Normal(n) => Normal.inv(maxCdfValue, n) | `Lognormal(n) => Lognormal.inv(maxCdfValue, n) | `Beta(n) => Beta.inv(maxCdfValue, n) | `Uniform({high}) => high | `Float(n) => n; let mean: symbolicDist => result(float, string) = fun | `Triangular(n) => Triangular.mean(n) | `Exponential(n) => Exponential.mean(n) | `Cauchy(n) => Cauchy.mean(n) | `Normal(n) => Normal.mean(n) | `Lognormal(n) => Lognormal.mean(n) | `Beta(n) => Beta.mean(n) | `Uniform(n) => Uniform.mean(n) | `Float(n) => Float.mean(n); let operate = (distToFloatOp: ExpressionTypes.distToFloatOperation, s) => switch (distToFloatOp) { | `Cdf(f) => Ok(cdf(f, s)) | `Pdf(f) => Ok(pdf(f, s)) | `Inv(f) => Ok(inv(f, s)) | `Sample => Ok(sample(s)) | `Mean => mean(s) }; let interpolateXs = (~xSelection: [ | `Linear | `ByWeight]=`Linear, dist: symbolicDist, n) => { switch (xSelection, dist) { | (`Linear, _) => E.A.Floats.range(min(dist), max(dist), n) | (`ByWeight, `Uniform(n)) => // In `ByWeight mode, uniform distributions get special treatment because we need two x's // on either side for proper rendering (just left and right of the discontinuities). let dx = 0.00001 *. (n.high -. n.low); [|n.low -. dx, n.low +. dx, n.high -. dx, n.high +. dx|]; | (`ByWeight, _) => let ys = E.A.Floats.range(minCdfValue, maxCdfValue, n); ys |> E.A.fmap(y => inv(y, dist)); }; }; /* Calling e.g. "Normal.operate" returns an optional that wraps a result. If the optional is None, there is no valid analytic solution. If it Some, it can still return an error if there is a serious problem, like in the case of a divide by 0. */ let tryAnalyticalSimplification = ( d1: symbolicDist, d2: symbolicDist, op: ExpressionTypes.algebraicOperation, ) : analyticalSimplificationResult => switch (d1, d2) { | (`Float(v1), `Float(v2)) => switch (Operation.Algebraic.applyFn(op, v1, v2)) { | Ok(r) => `AnalyticalSolution(`Float(r)) | Error(n) => `Error(n) } | (`Normal(v1), `Normal(v2)) => Normal.operate(op, v1, v2) |> E.O.dimap(r => `AnalyticalSolution(r), () => `NoSolution) | (`Lognormal(v1), `Lognormal(v2)) => Lognormal.operate(op, v1, v2) |> E.O.dimap(r => `AnalyticalSolution(r), () => `NoSolution) | _ => `NoSolution }; let toShape = (sampleCount, d: symbolicDist): DistTypes.shape => switch (d) { | `Float(v) => Discrete( Discrete.make({xs: [|v|], ys: [|1.0|]}, Some(1.0), None), ) | _ => let xs = interpolateXs(~xSelection=`ByWeight, d, sampleCount); let ys = xs |> E.A.fmap(x => pdf(x, d)); Continuous( Continuous.make(`Linear, {xs, ys}, Some(1.0), None), ); }; };