//TODO: multimodal, add interface, test somehow, track performance, refactor sampleSet, refactor ASTEvaluator.res. type t = DistributionTypes.genericDist type error = DistributionTypes.error type toPointSetFn = t => result type toSampleSetFn = t => result type scaleMultiplyFn = (t, float) => result type pointwiseAddFn = (t, t) => result let sampleN = (t: t, n) => switch t { | PointSet(r) => PointSetDist.sampleNRendered(n, r) | Symbolic(r) => SymbolicDist.T.sampleN(n, r) | SampleSet(r) => SampleSetDist.sampleN(r, n) } let toSampleSetDist = (t: t, n) => SampleSetDist.make(sampleN(t, n))->E.R2.errMap(DistributionTypes.Error.sampleErrorToDistErr) let fromFloat = (f: float): t => Symbolic(SymbolicDist.Float.make(f)) let toString = (t: t) => switch t { | PointSet(_) => "Point Set Distribution" | Symbolic(r) => SymbolicDist.T.toString(r) | SampleSet(_) => "Sample Set Distribution" } let normalize = (t: t): t => switch t { | PointSet(r) => PointSet(PointSetDist.T.normalize(r)) | Symbolic(_) => t | SampleSet(_) => t } let integralEndY = (t: t): float => switch t { | PointSet(r) => PointSetDist.T.integralEndY(r) | Symbolic(_) => 1.0 | SampleSet(_) => 1.0 } let isNormalized = (t: t): bool => Js.Math.abs_float(integralEndY(t) -. 1.0) < 1e-7 let toFloatOperation = ( t, ~toPointSetFn: toPointSetFn, ~distToFloatOperation: Operation.distToFloatOperation, ) => { let symbolicSolution = switch (t: t) { | Symbolic(r) => switch SymbolicDist.T.operate(distToFloatOperation, r) { | Ok(f) => Some(f) | _ => None } | _ => None } switch symbolicSolution { | Some(r) => Ok(r) | None => toPointSetFn(t)->E.R2.fmap(PointSetDist.operate(distToFloatOperation)) } } //Todo: If it's a pointSet, but the xyPointLength is different from what it has, it should change. // This is tricky because the case of discrete distributions. // Also, change the outputXYPoints/pointSetDistLength details let toPointSet = ( t, ~xyPointLength, ~sampleCount, ~xSelection: DistributionTypes.DistributionOperation.pointsetXSelection=#ByWeight, (), ): result => { switch (t: t) { | PointSet(pointSet) => Ok(pointSet) | Symbolic(r) => Ok(SymbolicDist.T.toPointSetDist(~xSelection, xyPointLength, r)) | SampleSet(r) => SampleSetDist.toPointSetDist( ~samples=r, ~samplingInputs={ sampleCount: sampleCount, outputXYPoints: xyPointLength, pointSetDistLength: xyPointLength, kernelWidth: None, }, )->E.R2.errMap(x => DistributionTypes.PointSetConversionError(x)) } } /* PointSetDist.toSparkline calls "downsampleEquallyOverX", which downsamples it to n=bucketCount. It first needs a pointSetDist, so we convert to a pointSetDist. In this process we want the xyPointLength to be a bit longer than the eventual toSparkline downsampling. I chose 3 fairly arbitrarily. */ let toSparkline = (t: t, ~sampleCount: int, ~bucketCount: int=20, ()): result => t ->toPointSet(~xSelection=#Linear, ~xyPointLength=bucketCount * 3, ~sampleCount, ()) ->E.R.bind(r => r->PointSetDist.toSparkline(bucketCount)->E.R2.errMap(x => DistributionTypes.SparklineError(x)) ) module Truncate = { let trySymbolicSimplification = ( leftCutoff: option, rightCutoff: option, t: t, ): option => switch (leftCutoff, rightCutoff, t) { | (None, None, _) => None | (Some(lc), Some(rc), Symbolic(#Uniform(u))) if lc < rc => Some(Symbolic(#Uniform(SymbolicDist.Uniform.truncate(Some(lc), Some(rc), u)))) | (lc, rc, Symbolic(#Uniform(u))) => Some(Symbolic(#Uniform(SymbolicDist.Uniform.truncate(lc, rc, u)))) | _ => None } let run = ( t: t, ~toPointSetFn: toPointSetFn, ~leftCutoff=None: option, ~rightCutoff=None: option, (), ): result => { let doesNotNeedCutoff = E.O.isNone(leftCutoff) && E.O.isNone(rightCutoff) if doesNotNeedCutoff { Ok(t) } else { switch trySymbolicSimplification(leftCutoff, rightCutoff, t) { | Some(r) => Ok(r) | None => toPointSetFn(t)->E.R2.fmap(t => { DistributionTypes.PointSet(PointSetDist.T.truncate(leftCutoff, rightCutoff, t)) }) } } } } let truncate = Truncate.run /* Given two random variables A and B, this returns the distribution of a new variable that is the result of the operation on A and B. For instance, normal(0, 1) + normal(1, 1) -> normal(1, 2). In general, this is implemented via convolution. TODO: It would be useful to be able to pass in a paramater to get this to run either with convolution or monte carlo. */ module AlgebraicCombination = { let tryAnalyticalSimplification = ( arithmeticOperation: Operation.algebraicOperation, t1: t, t2: t, ): option> => switch (arithmeticOperation, t1, t2) { | (arithmeticOperation, Symbolic(d1), Symbolic(d2)) => switch SymbolicDist.T.tryAnalyticalSimplification(d1, d2, arithmeticOperation) { | #AnalyticalSolution(symbolicDist) => Some(Ok(symbolicDist)) | #Error(er) => Some(Error(er)) | #NoSolution => None } | _ => None } let runConvolution = ( toPointSet: toPointSetFn, arithmeticOperation: Operation.convolutionOperation, t1: t, t2: t, ) => E.R.merge(toPointSet(t1), toPointSet(t2))->E.R2.fmap(((a, b)) => PointSetDist.combineAlgebraically(arithmeticOperation, a, b) ) let runMonteCarlo = ( toSampleSet: toSampleSetFn, arithmeticOperation: Operation.algebraicOperation, t1: t, t2: t, ): result => { let fn = Operation.Algebraic.toFn(arithmeticOperation) E.R.merge(toSampleSet(t1), toSampleSet(t2)) ->E.R.bind(((t1, t2)) => { SampleSetDist.map2(~fn, ~t1, ~t2)->E.R2.errMap(x => DistributionTypes.OperationError(x)) }) ->E.R2.fmap(r => DistributionTypes.SampleSet(r)) } //I'm (Ozzie) really just guessing here, very little idea what's best let expectedConvolutionCost: t => int = x => switch x { | Symbolic(#Float(_)) => 1 | Symbolic(_) => 1000 | PointSet(Discrete(m)) => m.xyShape->XYShape.T.length | PointSet(Mixed(_)) => 1000 | PointSet(Continuous(_)) => 1000 | _ => 1000 } type calculationMethod = MonteCarlo | Convolution(Operation.convolutionOperation) let chooseConvolutionOrMonteCarlo = ( op: Operation.algebraicOperation, t2: t, t1: t, ): calculationMethod => switch op { | #Divide | #Power | #Logarithm => MonteCarlo | (#Add | #Subtract | #Multiply) as convOp => expectedConvolutionCost(t1) * expectedConvolutionCost(t2) > 10000 ? MonteCarlo : Convolution(convOp) } let run = ( t1: t, ~toPointSetFn: toPointSetFn, ~toSampleSetFn: toSampleSetFn, ~arithmeticOperation, ~t2: t, ): result => { switch tryAnalyticalSimplification(arithmeticOperation, t1, t2) { | Some(Ok(symbolicDist)) => Ok(Symbolic(symbolicDist)) | Some(Error(e)) => Error(OperationError(e)) | None => switch chooseConvolutionOrMonteCarlo(arithmeticOperation, t1, t2) { | MonteCarlo => runMonteCarlo(toSampleSetFn, arithmeticOperation, t1, t2) | Convolution(convOp) => runConvolution(toPointSetFn, convOp, t1, t2)->E.R2.fmap(r => DistributionTypes.PointSet(r)) } } } } let algebraicCombination = AlgebraicCombination.run //TODO: Add faster pointwiseCombine fn let pointwiseCombination = ( t1: t, ~toPointSetFn: toPointSetFn, ~algebraicCombination: Operation.algebraicOperation, ~t2: t, ): result => { E.R.merge(toPointSetFn(t1), toPointSetFn(t2))->E.R.bind(((t1, t2)) => PointSetDist.combinePointwise(Operation.Algebraic.toFn(algebraicCombination), t1, t2) ->E.R2.fmap(r => DistributionTypes.PointSet(r)) ->E.R2.errMap(err => DistributionTypes.OperationError(err)) ) } let pointwiseCombinationFloat = ( t: t, ~toPointSetFn: toPointSetFn, ~algebraicCombination: Operation.algebraicOperation, ~f: float, ): result => { let m = switch algebraicCombination { | #Add | #Subtract => Error(DistributionTypes.DistributionVerticalShiftIsInvalid) | (#Multiply | #Divide | #Power | #Logarithm) as arithmeticOperation => toPointSetFn(t)->E.R.bind(t => { //TODO: Move to PointSet codebase let fn = (secondary, main) => Operation.Scale.toFn(arithmeticOperation, main, secondary) let integralSumCacheFn = Operation.Scale.toIntegralSumCacheFn(arithmeticOperation) let integralCacheFn = Operation.Scale.toIntegralCacheFn(arithmeticOperation) PointSetDist.T.mapYResult( ~integralSumCacheFn=integralSumCacheFn(f), ~integralCacheFn=integralCacheFn(f), ~fn=fn(f), t, )->E.R2.errMap(x => DistributionTypes.OperationError(x)) }) } m->E.R2.fmap(r => DistributionTypes.PointSet(r)) } //Note: The result should always cumulatively sum to 1. This would be good to test. //Note: If the inputs are not normalized, this will return poor results. The weights probably refer to the post-normalized forms. It would be good to apply a catch to this. let mixture = ( values: array<(t, float)>, ~scaleMultiplyFn: scaleMultiplyFn, ~pointwiseAddFn: pointwiseAddFn, ) => { if E.A.length(values) == 0 { Error(DistributionTypes.OtherError("Mixture error: mixture must have at least 1 element")) } else { let totalWeight = values->E.A2.fmap(E.Tuple2.second)->E.A.Floats.sum let properlyWeightedValues = values ->E.A2.fmap(((dist, weight)) => scaleMultiplyFn(dist, weight /. totalWeight)) ->E.A.R.firstErrorOrOpen properlyWeightedValues->E.R.bind(values => { values |> Js.Array.sliceFrom(1) |> E.A.fold_left( (acc, x) => E.R.bind(acc, acc => pointwiseAddFn(acc, x)), Ok(E.A.unsafe_get(values, 0)), ) }) } }