type functionCallInfo = DistributionTypes.DistributionOperation.genericFunctionCallInfo type genericDist = DistributionTypes.genericDist type error = DistributionTypes.error // TODO: It could be great to use a cache for some calculations (basically, do memoization). Also, better analytics/tracking could go a long way. type env = GenericDist.env let defaultEnv: env = { sampleCount: MagicNumbers.Environment.defaultSampleCount, xyPointLength: MagicNumbers.Environment.defaultXYPointLength, } type outputType = | Dist(genericDist) | Float(float) | String(string) | FloatArray(array) | Bool(bool) | GenDistError(error) /* We're going to add another function to this module later, so first define a local version, which is not exported. */ module OutputLocal = { type t = outputType let toError = (t: outputType) => switch t { | GenDistError(d) => Some(d) | _ => None } let toErrorOrUnreachable = (t: t): error => t->toError->E.O2.default((Unreachable: error)) let toDistR = (t: t): result => switch t { | Dist(r) => Ok(r) | e => Error(toErrorOrUnreachable(e)) } let toDist = (t: t) => switch t { | Dist(d) => Some(d) | _ => None } let toFloat = (t: t) => switch t { | Float(d) => Some(d) | _ => None } let toFloatR = (t: t): result => switch t { | Float(r) => Ok(r) | e => Error(toErrorOrUnreachable(e)) } let toString = (t: t) => switch t { | String(d) => Some(d) | _ => None } let toStringR = (t: t): result => switch t { | String(r) => Ok(r) | e => Error(toErrorOrUnreachable(e)) } let toBool = (t: t) => switch t { | Bool(d) => Some(d) | _ => None } let toBoolR = (t: t): result => switch t { | Bool(r) => Ok(r) | e => Error(toErrorOrUnreachable(e)) } //This is used to catch errors in other switch statements. let fromResult = (r: result): outputType => switch r { | Ok(t) => t | Error(e) => GenDistError(e) } } let rec run = (~env: env, functionCallInfo: functionCallInfo): outputType => { let {sampleCount, xyPointLength} = env let reCall = (~env=env, ~functionCallInfo=functionCallInfo, ()) => { run(~env, functionCallInfo) } let toPointSetFn = r => { switch reCall(~functionCallInfo=FromDist(#ToDist(ToPointSet), r), ()) { | Dist(PointSet(p)) => Ok(p) | e => Error(OutputLocal.toErrorOrUnreachable(e)) } } let toSampleSetFn = r => { switch reCall(~functionCallInfo=FromDist(#ToDist(ToSampleSet(sampleCount)), r), ()) { | Dist(SampleSet(p)) => Ok(p) | e => Error(OutputLocal.toErrorOrUnreachable(e)) } } let scaleMultiply = (r, weight) => reCall( ~functionCallInfo=FromDist(#ToDistCombination(Pointwise, #Multiply, #Float(weight)), r), (), )->OutputLocal.toDistR let pointwiseAdd = (r1, r2) => reCall( ~functionCallInfo=FromDist(#ToDistCombination(Pointwise, #Add, #Dist(r2)), r1), (), )->OutputLocal.toDistR let fromDistFn = ( subFnName: DistributionTypes.DistributionOperation.fromDist, dist: genericDist, ): outputType => { let response = switch subFnName { | #ToFloat(distToFloatOperation) => GenericDist.toFloatOperation(dist, ~toPointSetFn, ~distToFloatOperation) ->E.R2.fmap(r => Float(r)) ->OutputLocal.fromResult | #ToString(ToString) => dist->GenericDist.toString->String | #ToString(ToSparkline(bucketCount)) => GenericDist.toSparkline(dist, ~sampleCount, ~bucketCount, ()) ->E.R2.fmap(r => String(r)) ->OutputLocal.fromResult | #ToDist(Inspect) => { Js.log2("Console log requested: ", dist) Dist(dist) } | #ToDist(Normalize) => dist->GenericDist.normalize->Dist | #ToScore(LogScore(answer, prior)) => GenericDist.Score.logScore(~estimate=dist, ~answer, ~prior, ~env) ->E.R2.fmap(s => Float(s)) ->OutputLocal.fromResult | #ToBool(IsNormalized) => dist->GenericDist.isNormalized->Bool | #ToDist(Truncate(leftCutoff, rightCutoff)) => GenericDist.truncate(~toPointSetFn, ~leftCutoff, ~rightCutoff, dist, ()) ->E.R2.fmap(r => Dist(r)) ->OutputLocal.fromResult | #ToDist(ToSampleSet(n)) => dist ->GenericDist.toSampleSetDist(n) ->E.R2.fmap(r => Dist(SampleSet(r))) ->OutputLocal.fromResult | #ToDist(ToPointSet) => dist ->GenericDist.toPointSet(~xyPointLength, ~sampleCount, ()) ->E.R2.fmap(r => Dist(PointSet(r))) ->OutputLocal.fromResult | #ToDist(Scale(#LogarithmWithThreshold(eps), f)) => dist ->GenericDist.pointwiseCombinationFloat( ~toPointSetFn, ~algebraicCombination=#LogarithmWithThreshold(eps), ~f, ) ->E.R2.fmap(r => Dist(r)) ->OutputLocal.fromResult | #ToDist(Scale(#Multiply, f)) => dist ->GenericDist.pointwiseCombinationFloat(~toPointSetFn, ~algebraicCombination=#Multiply, ~f) ->E.R2.fmap(r => Dist(r)) ->OutputLocal.fromResult | #ToDist(Scale(#Logarithm, f)) => dist ->GenericDist.pointwiseCombinationFloat(~toPointSetFn, ~algebraicCombination=#Logarithm, ~f) ->E.R2.fmap(r => Dist(r)) ->OutputLocal.fromResult | #ToDist(Scale(#Power, f)) => dist ->GenericDist.pointwiseCombinationFloat(~toPointSetFn, ~algebraicCombination=#Power, ~f) ->E.R2.fmap(r => Dist(r)) ->OutputLocal.fromResult | #ToDistCombination(Algebraic(_), _, #Float(_)) => GenDistError(NotYetImplemented) | #ToDistCombination(Algebraic(strategy), arithmeticOperation, #Dist(t2)) => dist ->GenericDist.algebraicCombination( ~strategy, ~toPointSetFn, ~toSampleSetFn, ~arithmeticOperation, ~t2, ) ->E.R2.fmap(r => Dist(r)) ->OutputLocal.fromResult | #ToDistCombination(Pointwise, algebraicCombination, #Dist(t2)) => dist ->GenericDist.pointwiseCombination(~toPointSetFn, ~algebraicCombination, ~t2) ->E.R2.fmap(r => Dist(r)) ->OutputLocal.fromResult | #ToDistCombination(Pointwise, algebraicCombination, #Float(f)) => dist ->GenericDist.pointwiseCombinationFloat(~toPointSetFn, ~algebraicCombination, ~f) ->E.R2.fmap(r => Dist(r)) ->OutputLocal.fromResult } response } switch functionCallInfo { | FromDist(subFnName, dist) => fromDistFn(subFnName, dist) | FromFloat(subFnName, x) => reCall(~functionCallInfo=FromFloat(subFnName, x), ()) | Mixture(dists) => dists ->GenericDist.mixture(~scaleMultiplyFn=scaleMultiply, ~pointwiseAddFn=pointwiseAdd, ~env) ->E.R2.fmap(r => Dist(r)) ->OutputLocal.fromResult | FromSamples(xs) => xs ->SampleSetDist.make ->E.R2.errMap(x => DistributionTypes.SampleSetError(x)) ->E.R2.fmap(x => x->DistributionTypes.SampleSet->Dist) ->OutputLocal.fromResult } } let runFromDist = (~env, ~functionCallInfo, dist) => run(~env, FromDist(functionCallInfo, dist)) let runFromFloat = (~env, ~functionCallInfo, float) => run(~env, FromFloat(functionCallInfo, float)) module Output = { include OutputLocal let fmap = ( ~env, input: outputType, functionCallInfo: DistributionTypes.DistributionOperation.singleParamaterFunction, ): outputType => { let newFnCall: result = switch (functionCallInfo, input) { | (FromDist(fromDist), Dist(o)) => Ok(FromDist(fromDist, o)) | (FromFloat(fromDist), Float(o)) => Ok(FromFloat(fromDist, o)) | (_, GenDistError(r)) => Error(r) | (FromDist(_), _) => Error(OtherError("Expected dist, got something else")) | (FromFloat(_), _) => Error(OtherError("Expected float, got something else")) } newFnCall->E.R2.fmap(run(~env))->OutputLocal.fromResult } } // See comment above DistributionTypes.Constructors to explain the purpose of this module. // I tried having another internal module called UsingDists, similar to how its done in // DistributionTypes.Constructors. However, this broke GenType for me, so beware. module Constructors = { module C = DistributionTypes.Constructors.UsingDists open OutputLocal let mean = (~env, dist) => C.mean(dist)->run(~env)->toFloatR let stdev = (~env, dist) => C.stdev(dist)->run(~env)->toFloatR let variance = (~env, dist) => C.variance(dist)->run(~env)->toFloatR let sample = (~env, dist) => C.sample(dist)->run(~env)->toFloatR let cdf = (~env, dist, f) => C.cdf(dist, f)->run(~env)->toFloatR let inv = (~env, dist, f) => C.inv(dist, f)->run(~env)->toFloatR let pdf = (~env, dist, f) => C.pdf(dist, f)->run(~env)->toFloatR let normalize = (~env, dist) => C.normalize(dist)->run(~env)->toDistR let isNormalized = (~env, dist) => C.isNormalized(dist)->run(~env)->toBoolR module LogScore = { let distEstimateDistAnswer = (~env, estimate, answer) => C.LogScore.distEstimateDistAnswer(estimate, answer)->run(~env)->toFloatR let distEstimateDistAnswerWithPrior = (~env, estimate, answer, prior) => C.LogScore.distEstimateDistAnswerWithPrior(estimate, answer, prior)->run(~env)->toFloatR let distEstimateScalarAnswer = (~env, estimate, answer) => C.LogScore.distEstimateScalarAnswer(estimate, answer)->run(~env)->toFloatR let distEstimateScalarAnswerWithPrior = (~env, estimate, answer, prior) => C.LogScore.distEstimateScalarAnswerWithPrior(estimate, answer, prior)->run(~env)->toFloatR } let toPointSet = (~env, dist) => C.toPointSet(dist)->run(~env)->toDistR let toSampleSet = (~env, dist, n) => C.toSampleSet(dist, n)->run(~env)->toDistR let fromSamples = (~env, xs) => C.fromSamples(xs)->run(~env)->toDistR let truncate = (~env, dist, leftCutoff, rightCutoff) => C.truncate(dist, leftCutoff, rightCutoff)->run(~env)->toDistR let inspect = (~env, dist) => C.inspect(dist)->run(~env)->toDistR let toString = (~env, dist) => C.toString(dist)->run(~env)->toStringR let toSparkline = (~env, dist, bucketCount) => C.toSparkline(dist, bucketCount)->run(~env)->toStringR let algebraicAdd = (~env, dist1, dist2) => C.algebraicAdd(dist1, dist2)->run(~env)->toDistR let algebraicMultiply = (~env, dist1, dist2) => C.algebraicMultiply(dist1, dist2)->run(~env)->toDistR let algebraicDivide = (~env, dist1, dist2) => C.algebraicDivide(dist1, dist2)->run(~env)->toDistR let algebraicSubtract = (~env, dist1, dist2) => C.algebraicSubtract(dist1, dist2)->run(~env)->toDistR let algebraicLogarithm = (~env, dist1, dist2) => C.algebraicLogarithm(dist1, dist2)->run(~env)->toDistR let algebraicPower = (~env, dist1, dist2) => C.algebraicPower(dist1, dist2)->run(~env)->toDistR let scaleMultiply = (~env, dist, n) => C.scaleMultiply(dist, n)->run(~env)->toDistR let scalePower = (~env, dist, n) => C.scalePower(dist, n)->run(~env)->toDistR let scaleLogarithm = (~env, dist, n) => C.scaleLogarithm(dist, n)->run(~env)->toDistR let pointwiseAdd = (~env, dist1, dist2) => C.pointwiseAdd(dist1, dist2)->run(~env)->toDistR let pointwiseMultiply = (~env, dist1, dist2) => C.pointwiseMultiply(dist1, dist2)->run(~env)->toDistR let pointwiseDivide = (~env, dist1, dist2) => C.pointwiseDivide(dist1, dist2)->run(~env)->toDistR let pointwiseSubtract = (~env, dist1, dist2) => C.pointwiseSubtract(dist1, dist2)->run(~env)->toDistR let pointwiseLogarithm = (~env, dist1, dist2) => C.pointwiseLogarithm(dist1, dist2)->run(~env)->toDistR let pointwisePower = (~env, dist1, dist2) => C.pointwisePower(dist1, dist2)->run(~env)->toDistR }