@genType module Error = { @genType type sampleSetError = TooFewSamples | NonNumericInput(string) | OperationError(Operation.operationError) let sampleSetErrorToString = (err: sampleSetError): string => switch err { | TooFewSamples => "Too few samples when constructing sample set" | NonNumericInput(err) => `Found a non-number in input: ${err}` | OperationError(err) => Operation.Error.toString(err) } @genType type pointsetConversionError = TooFewSamplesForConversionToPointSet let pointsetConversionErrorToString = (err: pointsetConversionError) => switch err { | TooFewSamplesForConversionToPointSet => "Too Few Samples to convert to point set" } let fromOperationError = e => OperationError(e) let toString = (err: sampleSetError) => { switch err { | TooFewSamples => "Too few samples when constructing sample set" | NonNumericInput(err) => `Found a non-number in input: ${err}` | OperationError(err) => Operation.Error.toString(err) } } } include Error /* This is used as a smart constructor. The only way to create a SampleSetDist.t is to call this constructor. https://stackoverflow.com/questions/66909578/how-to-make-a-type-constructor-private-in-rescript-except-in-current-module */ module T: { //This really should be hidden (remove the array). The reason it isn't is to act as an escape hatch in JS__Test.ts. //When we get a good functional library in TS, we could refactor that out. @genType type t = array let make: array => result let get: t => array } = { type t = array let make = (a: array) => if E.A.length(a) > 5 { Ok(a) } else { Error(TooFewSamples) } let get = (a: t) => a } include T let length = (t: t) => get(t)->E.A.length /* TODO: Refactor to get a more precise estimate. Also, this code is just fairly messy, could use some refactoring. */ let toPointSetDist = (~samples: t, ~samplingInputs: SamplingInputs.samplingInputs): result< PointSetTypes.pointSetDist, pointsetConversionError, > => SampleSetDist_ToPointSet.toPointSetDist( ~samples=get(samples), ~samplingInputs, (), ).pointSetDist->E.O2.toResult(TooFewSamplesForConversionToPointSet) //Randomly get one sample from the distribution let sample = (t: t): float => { let i = E.Int.random(~min=0, ~max=E.A.length(get(t)) - 1) E.A.unsafe_get(get(t), i) } /* If asked for a length of samples shorter or equal the length of the distribution, return this first n samples of this distribution. Else, return n random samples of the distribution. The former helps in cases where multiple distributions are correlated. However, if n > length(t), then there's no clear right answer, so we just randomly sample everything. */ let sampleN = (t: t, n) => { if n <= E.A.length(get(t)) { E.A.slice(get(t), ~offset=0, ~len=n) } else { Belt.Array.makeBy(n, _ => sample(t)) } } let _fromSampleResultArray = (samples: array>) => E.A.R.firstErrorOrOpen(samples)->E.R2.errMap(Error.fromOperationError) |> E.R2.bind(make) let samplesMap = (~fn: float => result, t: t): result< t, sampleSetError, > => T.get(t)->E.A2.fmap(fn)->_fromSampleResultArray //TODO: Figure out what to do if distributions are different lengths. ``zip`` is kind of inelegant for this. let map2 = (~fn: (float, float) => result, ~t1: t, ~t2: t): result< t, sampleSetError, > => E.A.zip(get(t1), get(t2))->E.A2.fmap(E.Tuple2.toFnCall(fn))->_fromSampleResultArray let map3 = ( ~fn: (float, float, float) => result, ~t1: t, ~t2: t, ~t3: t, ): result => E.A.zip3(get(t1), get(t2), get(t3))->E.A2.fmap(E.Tuple3.toFnCall(fn))->_fromSampleResultArray let mapN = (~fn: array => result, ~t1: array): result< t, sampleSetError, > => E.A.transpose(E.A.fmap(get, t1))->E.A2.fmap(fn)->_fromSampleResultArray let mean = t => T.get(t)->E.A.Floats.mean let geomean = t => T.get(t)->E.A.Floats.geomean let mode = t => T.get(t)->E.A.Floats.mode let sum = t => T.get(t)->E.A.Floats.sum let min = t => T.get(t)->E.A.Floats.min let max = t => T.get(t)->E.A.Floats.max let stdev = t => T.get(t)->E.A.Floats.stdev let variance = t => T.get(t)->E.A.Floats.variance let percentile = (t, f) => T.get(t)->E.A.Floats.percentile(f) let mixture = (values: array<(t, float)>, intendedLength: int) => { let totalWeight = values->E.A2.fmap(E.Tuple2.second)->E.A.Floats.sum values ->E.A2.fmap(((dist, weight)) => { let adjustedWeight = weight /. totalWeight let samplesToGet = adjustedWeight *. E.I.toFloat(intendedLength) |> E.Float.toInt sampleN(dist, samplesToGet) }) ->E.A.concatMany ->T.make }