/* This is the most basic file in our invariants family of tests. Validate that the addition of means equals the mean of the addition, similar for subtraction and multiplication. Details in https://develop--squiggle-documentation.netlify.app/docs/internal/invariants/ Note: epsilon of 1e3 means the invariants are, in general, not being satisfied. */ open Jest open Expect open TestHelpers module Internals = { let epsilon = 5e1 let mean = DistributionTypes.Constructors.UsingDists.mean let expectImpossiblePath: string => assertion = algebraicOp => `${algebraicOp} has`->expect->toEqual("failed") let distributions = list{ normalMake(4e0, 1e0), betaMake(2e0, 4e0), exponentialMake(1.234e0), uniformMake(7e0, 1e1), // cauchyMake(1e0, 1e0), lognormalMake(2e0, 1e0), triangularMake(1e0, 1e1, 5e1), Ok(floatMake(1e1)), } let pairsOfDifferentDistributions = E.L.combinations2(distributions) let runMean: DistributionTypes.genericDist => float = dist => { dist->mean->run->toFloat->E.O2.toExn("Shouldn't see this because we trust testcase input") } let testOperationMean = ( distOp: ( DistributionTypes.genericDist, DistributionTypes.genericDist, ) => result, description: string, floatOp: (float, float) => float, dist1': SymbolicDistTypes.symbolicDist, dist2': SymbolicDistTypes.symbolicDist, ~epsilon: float, ) => { let dist1 = dist1'->DistributionTypes.Symbolic let dist2 = dist2'->DistributionTypes.Symbolic let received = distOp(dist1, dist2)->E.R2.fmap(mean)->E.R2.fmap(run)->E.R2.fmap(toFloat)->E.R.toExn let expected = floatOp(runMean(dist1), runMean(dist2)) switch received { | None => expectImpossiblePath(description) | Some(x) => expectErrorToBeBounded(x, expected, ~epsilon) } } } let { algebraicAdd, algebraicMultiply, algebraicDivide, algebraicSubtract, algebraicLogarithm, algebraicPower, } = module(DistributionOperation.Constructors) let algebraicAdd = algebraicAdd(~env) let algebraicMultiply = algebraicMultiply(~env) let algebraicDivide = algebraicDivide(~env) let algebraicSubtract = algebraicSubtract(~env) let algebraicLogarithm = algebraicLogarithm(~env) let algebraicPower = algebraicPower(~env) let {testOperationMean, distributions, pairsOfDifferentDistributions, epsilon} = module(Internals) describe("Means are invariant", () => { describe("for addition", () => { let testAdditionMean = testOperationMean(algebraicAdd, "algebraicAdd", \"+.", ~epsilon) testAll("with two of the same distribution", distributions, dist => { E.R.liftM2(testAdditionMean, dist, dist)->E.R.toExn }) testAll("with two different distributions", pairsOfDifferentDistributions, dists => { let (dist1, dist2) = dists E.R.liftM2(testAdditionMean, dist1, dist2)->E.R.toExn }) testAll( "with two different distributions in swapped order", pairsOfDifferentDistributions, dists => { let (dist1, dist2) = dists E.R.liftM2(testAdditionMean, dist2, dist1)->E.R.toExn }, ) }) describe("for subtraction", () => { let testSubtractionMean = testOperationMean( algebraicSubtract, "algebraicSubtract", \"-.", ~epsilon, ) testAll("with two of the same distribution", distributions, dist => { E.R.liftM2(testSubtractionMean, dist, dist)->E.R.toExn }) testAll("with two different distributions", pairsOfDifferentDistributions, dists => { let (dist1, dist2) = dists E.R.liftM2(testSubtractionMean, dist1, dist2)->E.R.toExn }) testAll( "with two different distributions in swapped order", pairsOfDifferentDistributions, dists => { let (dist1, dist2) = dists E.R.liftM2(testSubtractionMean, dist2, dist1)->E.R.toExn }, ) }) describe("for multiplication", () => { let testMultiplicationMean = testOperationMean( algebraicMultiply, "algebraicMultiply", \"*.", ~epsilon, ) testAll("with two of the same distribution", distributions, dist => { E.R.liftM2(testMultiplicationMean, dist, dist)->E.R.toExn }) testAll("with two different distributions", pairsOfDifferentDistributions, dists => { let (dist1, dist2) = dists E.R.liftM2(testMultiplicationMean, dist1, dist2)->E.R.toExn }) testAll( "with two different distributions in swapped order", pairsOfDifferentDistributions, dists => { let (dist1, dist2) = dists E.R.liftM2(testMultiplicationMean, dist2, dist1)->E.R.toExn }, ) }) })