module ExpressionValue = ReducerInterface_InternalExpressionValue type expressionValue = ExpressionValue.expressionValue module Helpers = { let arithmeticMap = r => switch r { | "add" => #Add | "dotAdd" => #Add | "subtract" => #Subtract | "dotSubtract" => #Subtract | "divide" => #Divide | "log" => #Logarithm | "dotDivide" => #Divide | "pow" => #Power | "dotPow" => #Power | "multiply" => #Multiply | "dotMultiply" => #Multiply | _ => #Multiply } let catchAndConvertTwoArgsToDists = (args: array): option<( DistributionTypes.genericDist, DistributionTypes.genericDist, )> => switch args { | [IevDistribution(a), IevDistribution(b)] => Some((a, b)) | [IevNumber(a), IevDistribution(b)] => Some((GenericDist.fromFloat(a), b)) | [IevDistribution(a), IevNumber(b)] => Some((a, GenericDist.fromFloat(b))) | _ => None } let toFloatFn = ( fnCall: DistributionTypes.DistributionOperation.toFloat, dist: DistributionTypes.genericDist, ~env: DistributionOperation.env, ) => { FromDist(DistributionTypes.DistributionOperation.ToFloat(fnCall), dist) ->DistributionOperation.run(~env) ->Some } let toStringFn = ( fnCall: DistributionTypes.DistributionOperation.toString, dist: DistributionTypes.genericDist, ~env: DistributionOperation.env, ) => { FromDist(DistributionTypes.DistributionOperation.ToString(fnCall), dist) ->DistributionOperation.run(~env) ->Some } let toBoolFn = ( fnCall: DistributionTypes.DistributionOperation.toBool, dist: DistributionTypes.genericDist, ~env: DistributionOperation.env, ) => { FromDist(DistributionTypes.DistributionOperation.ToBool(fnCall), dist) ->DistributionOperation.run(~env) ->Some } let toDistFn = ( fnCall: DistributionTypes.DistributionOperation.toDist, dist, ~env: DistributionOperation.env, ) => { FromDist(DistributionTypes.DistributionOperation.ToDist(fnCall), dist) ->DistributionOperation.run(~env) ->Some } let twoDiststoDistFn = (direction, arithmetic, dist1, dist2, ~env: DistributionOperation.env) => { FromDist( DistributionTypes.DistributionOperation.ToDistCombination( direction, arithmeticMap(arithmetic), #Dist(dist2), ), dist1, )->DistributionOperation.run(~env) } let parseNumber = (args: expressionValue): Belt.Result.t => switch args { | IevNumber(x) => Ok(x) | _ => Error("Not a number") } let parseNumberArray = (ags: array): Belt.Result.t, string> => E.A.fmap(parseNumber, ags) |> E.A.R.firstErrorOrOpen let parseDist = (args: expressionValue): Belt.Result.t => switch args { | IevDistribution(x) => Ok(x) | IevNumber(x) => Ok(GenericDist.fromFloat(x)) | _ => Error("Not a distribution") } let parseDistributionArray = (ags: array): Belt.Result.t< array, string, > => E.A.fmap(parseDist, ags) |> E.A.R.firstErrorOrOpen let mixtureWithGivenWeights = ( distributions: array, weights: array, ~env: DistributionOperation.env, ): DistributionOperation.outputType => E.A.length(distributions) == E.A.length(weights) ? Mixture(Belt.Array.zip(distributions, weights))->DistributionOperation.run(~env) : GenDistError( ArgumentError("Error, mixture call has different number of distributions and weights"), ) let mixtureWithDefaultWeights = ( distributions: array, ~env: DistributionOperation.env, ): DistributionOperation.outputType => { let length = E.A.length(distributions) let weights = Belt.Array.make(length, 1.0 /. Belt.Int.toFloat(length)) mixtureWithGivenWeights(distributions, weights, ~env) } let mixture = ( args: array, ~env: DistributionOperation.env, ): DistributionOperation.outputType => { let error = (err: string): DistributionOperation.outputType => err->DistributionTypes.ArgumentError->GenDistError switch args { | [IevArray(distributions)] => switch parseDistributionArray(distributions) { | Ok(distrs) => mixtureWithDefaultWeights(distrs, ~env) | Error(err) => error(err) } | [IevArray(distributions), IevArray(weights)] => switch (parseDistributionArray(distributions), parseNumberArray(weights)) { | (Ok(distrs), Ok(wghts)) => mixtureWithGivenWeights(distrs, wghts, ~env) | (Error(err), Ok(_)) => error(err) | (Ok(_), Error(err)) => error(err) | (Error(err1), Error(err2)) => error(`${err1}|${err2}`) } | _ => switch E.A.last(args) { | Some(IevArray(b)) => { let weights = parseNumberArray(b) let distributions = parseDistributionArray( Belt.Array.slice(args, ~offset=0, ~len=E.A.length(args) - 1), ) switch E.R.merge(distributions, weights) { | Ok(d, w) => mixtureWithGivenWeights(d, w, ~env) | Error(err) => error(err) } } | Some(IevNumber(_)) | Some(IevDistribution(_)) => switch parseDistributionArray(args) { | Ok(distributions) => mixtureWithDefaultWeights(distributions, ~env) | Error(err) => error(err) } | _ => error("Last argument of mx must be array or distribution") } } } let klDivergenceWithPrior = ( prediction: DistributionTypes.genericDist, answer: DistributionTypes.genericDist, prior: DistributionTypes.genericDist, env: DistributionOperation.env, ) => { let term1 = DistributionOperation.Constructors.klDivergence(~env, prediction, answer) let term2 = DistributionOperation.Constructors.klDivergence(~env, prior, answer) switch E.R.merge(term1, term2)->E.R2.fmap(((a, b)) => a -. b) { | Ok(x) => x->DistributionOperation.Float->Some | Error(_) => None } } } module SymbolicConstructors = { let threeFloat = name => switch name { | "triangular" => Ok(SymbolicDist.Triangular.make) | _ => Error("Unreachable state") } let symbolicResultToOutput = ( symbolicResult: result, ): option => switch symbolicResult { | Ok(r) => Some(Dist(Symbolic(r))) | Error(r) => Some(GenDistError(OtherError(r))) } } let dispatchToGenericOutput = ( call: ExpressionValue.functionCall, env: DistributionOperation.env, ): option => { let (fnName, args) = call switch (fnName, args) { | ("triangular" as fnName, [IevNumber(f1), IevNumber(f2), IevNumber(f3)]) => SymbolicConstructors.threeFloat(fnName) ->E.R.bind(r => r(f1, f2, f3)) ->SymbolicConstructors.symbolicResultToOutput | ("sample", [IevDistribution(dist)]) => Helpers.toFloatFn(#Sample, dist, ~env) | ("sampleN", [IevDistribution(dist), IevNumber(n)]) => Some(FloatArray(GenericDist.sampleN(dist, Belt.Int.fromFloat(n)))) | (("mean" | "stdev" | "variance" | "min" | "max" | "mode") as op, [IevDistribution(dist)]) => { let fn = switch op { | "mean" => #Mean | "stdev" => #Stdev | "variance" => #Variance | "min" => #Min | "max" => #Max | "mode" => #Mode | _ => #Mean } Helpers.toFloatFn(fn, dist, ~env) } | ("integralSum", [IevDistribution(dist)]) => Helpers.toFloatFn(#IntegralSum, dist, ~env) | ("toString", [IevDistribution(dist)]) => Helpers.toStringFn(ToString, dist, ~env) | ("sparkline", [IevDistribution(dist)]) => Helpers.toStringFn(ToSparkline(MagicNumbers.Environment.sparklineLength), dist, ~env) | ("sparkline", [IevDistribution(dist), IevNumber(n)]) => Helpers.toStringFn(ToSparkline(Belt.Float.toInt(n)), dist, ~env) | ("exp", [IevDistribution(a)]) => // https://mathjs.org/docs/reference/functions/exp.html Helpers.twoDiststoDistFn( Algebraic(AsDefault), "pow", GenericDist.fromFloat(MagicNumbers.Math.e), a, ~env, )->Some | ("normalize", [IevDistribution(dist)]) => Helpers.toDistFn(Normalize, dist, ~env) | ("klDivergence", [IevDistribution(prediction), IevDistribution(answer)]) => Some(DistributionOperation.run(FromDist(ToScore(KLDivergence(answer)), prediction), ~env)) | ( "klDivergence", [IevDistribution(prediction), IevDistribution(answer), IevDistribution(prior)], ) => Helpers.klDivergenceWithPrior(prediction, answer, prior, env) | ( "logScoreWithPointAnswer", [IevDistribution(prediction), IevNumber(answer), IevDistribution(prior)], ) | ( "logScoreWithPointAnswer", [ IevDistribution(prediction), IevDistribution(Symbolic(#Float(answer))), IevDistribution(prior), ], ) => DistributionOperation.run( FromDist(ToScore(LogScore(answer, prior->Some)), prediction), ~env, )->Some | ("logScoreWithPointAnswer", [IevDistribution(prediction), IevNumber(answer)]) | ( "logScoreWithPointAnswer", [IevDistribution(prediction), IevDistribution(Symbolic(#Float(answer)))], ) => DistributionOperation.run(FromDist(ToScore(LogScore(answer, None)), prediction), ~env)->Some | ("isNormalized", [IevDistribution(dist)]) => Helpers.toBoolFn(IsNormalized, dist, ~env) | ("toPointSet", [IevDistribution(dist)]) => Helpers.toDistFn(ToPointSet, dist, ~env) | ("scaleLog", [IevDistribution(dist)]) => Helpers.toDistFn(Scale(#Logarithm, MagicNumbers.Math.e), dist, ~env) | ("scaleLog10", [IevDistribution(dist)]) => Helpers.toDistFn(Scale(#Logarithm, 10.0), dist, ~env) | ("scaleLog", [IevDistribution(dist), IevNumber(float)]) => Helpers.toDistFn(Scale(#Logarithm, float), dist, ~env) | ("scaleLogWithThreshold", [IevDistribution(dist), IevNumber(base), IevNumber(eps)]) => Helpers.toDistFn(Scale(#LogarithmWithThreshold(eps), base), dist, ~env) | ("scaleMultiply", [IevDistribution(dist), IevNumber(float)]) => Helpers.toDistFn(Scale(#Multiply, float), dist, ~env) | ("scalePow", [IevDistribution(dist), IevNumber(float)]) => Helpers.toDistFn(Scale(#Power, float), dist, ~env) | ("scaleExp", [IevDistribution(dist)]) => Helpers.toDistFn(Scale(#Power, MagicNumbers.Math.e), dist, ~env) | ("cdf", [IevDistribution(dist), IevNumber(float)]) => Helpers.toFloatFn(#Cdf(float), dist, ~env) | ("pdf", [IevDistribution(dist), IevNumber(float)]) => Helpers.toFloatFn(#Pdf(float), dist, ~env) | ("inv", [IevDistribution(dist), IevNumber(float)]) => Helpers.toFloatFn(#Inv(float), dist, ~env) | ("quantile", [IevDistribution(dist), IevNumber(float)]) => Helpers.toFloatFn(#Inv(float), dist, ~env) | ("toSampleSet", [IevDistribution(dist), IevNumber(float)]) => Helpers.toDistFn(ToSampleSet(Belt.Int.fromFloat(float)), dist, ~env) | ("toSampleSet", [IevDistribution(dist)]) => Helpers.toDistFn(ToSampleSet(env.sampleCount), dist, ~env) | ("toList", [IevDistribution(SampleSet(dist))]) => Some(FloatArray(SampleSetDist.T.get(dist))) | ("fromSamples", [IevArray(inputArray)]) => { let _wrapInputErrors = x => SampleSetDist.NonNumericInput(x) let parsedArray = Helpers.parseNumberArray(inputArray)->E.R2.errMap(_wrapInputErrors) switch parsedArray { | Ok(array) => DistributionOperation.run(FromSamples(array), ~env) | Error(e) => GenDistError(SampleSetError(e)) }->Some } | ("inspect", [IevDistribution(dist)]) => Helpers.toDistFn(Inspect, dist, ~env) | ("truncateLeft", [IevDistribution(dist), IevNumber(float)]) => Helpers.toDistFn(Truncate(Some(float), None), dist, ~env) | ("truncateRight", [IevDistribution(dist), IevNumber(float)]) => Helpers.toDistFn(Truncate(None, Some(float)), dist, ~env) | ("truncate", [IevDistribution(dist), IevNumber(float1), IevNumber(float2)]) => Helpers.toDistFn(Truncate(Some(float1), Some(float2)), dist, ~env) | ("mx" | "mixture", args) => Helpers.mixture(args, ~env)->Some | ("log", [IevDistribution(a)]) => Helpers.twoDiststoDistFn( Algebraic(AsDefault), "log", a, GenericDist.fromFloat(MagicNumbers.Math.e), ~env, )->Some | ("log10", [IevDistribution(a)]) => Helpers.twoDiststoDistFn( Algebraic(AsDefault), "log", a, GenericDist.fromFloat(10.0), ~env, )->Some | ("unaryMinus", [IevDistribution(a)]) => Helpers.twoDiststoDistFn( Algebraic(AsDefault), "multiply", a, GenericDist.fromFloat(-1.0), ~env, )->Some | (("add" | "multiply" | "subtract" | "divide" | "pow" | "log") as arithmetic, [_, _] as args) => Helpers.catchAndConvertTwoArgsToDists(args)->E.O2.fmap(((fst, snd)) => Helpers.twoDiststoDistFn(Algebraic(AsDefault), arithmetic, fst, snd, ~env) ) | ( ("dotAdd" | "dotMultiply" | "dotSubtract" | "dotDivide" | "dotPow") as arithmetic, [_, _] as args, ) => Helpers.catchAndConvertTwoArgsToDists(args)->E.O2.fmap(((fst, snd)) => Helpers.twoDiststoDistFn(Pointwise, arithmetic, fst, snd, ~env) ) | ("dotExp", [IevDistribution(a)]) => Helpers.twoDiststoDistFn( Pointwise, "dotPow", GenericDist.fromFloat(MagicNumbers.Math.e), a, ~env, )->Some | _ => None } } let genericOutputToReducerValue = (o: DistributionOperation.outputType): result< expressionValue, Reducer_ErrorValue.errorValue, > => switch o { | Dist(d) => Ok(ReducerInterface_InternalExpressionValue.IevDistribution(d)) | Float(d) => Ok(IevNumber(d)) | String(d) => Ok(IevString(d)) | Bool(d) => Ok(IevBool(d)) | FloatArray(d) => Ok(IevArray(d |> E.A.fmap(r => ReducerInterface_InternalExpressionValue.IevNumber(r)))) | GenDistError(err) => Error(REDistributionError(err)) } let dispatch = (call: ExpressionValue.functionCall, environment) => dispatchToGenericOutput(call, environment)->E.O2.fmap(genericOutputToReducerValue)