tweak: Add error checking to dmr calculation
This commit is contained in:
parent
60e42cf1e8
commit
fc2d647b62
|
@ -272,92 +272,114 @@ module DiminishingReturns = {
|
|||
1. O(n): Iterate through value on next n dollars. At each step, only compute the new marginal return of the function which is spent
|
||||
2. O(n*m): Iterate through all possible spending combinations. The advantage of this option is that it wouldn't assume that the returns of marginal spending are diminishing.
|
||||
*/
|
||||
let applyFunctionAtPoint = (lambda, point: float) => {
|
||||
// Defined here so that it has access to environment, reducer
|
||||
let pointAsInternalExpression = FunctionRegistry_Helpers.Wrappers.evNumber(point)
|
||||
let resultAsInternalExpression = Reducer_Expression_Lambda.doLambdaCall(
|
||||
lambda,
|
||||
list{pointAsInternalExpression},
|
||||
environment,
|
||||
reducer,
|
||||
switch (
|
||||
E.A.length(lambdas) > 1,
|
||||
funds > 0.0,
|
||||
approximateIncrement > 0.0,
|
||||
funds > approximateIncrement,
|
||||
) {
|
||||
| (false, _, _, _) =>
|
||||
Error(
|
||||
"Error in Danger.optimalAllocationGivenDiminishingMarginalReturnsForManyFunctions, number of functions should be greater than 1.",
|
||||
)
|
||||
switch resultAsInternalExpression {
|
||||
| Ok(IEvNumber(x)) => Ok(x)
|
||||
| Error(_) =>
|
||||
Error(
|
||||
"Error 1 in Danger.optimalAllocationGivenDiminishingMarginalReturnsForManyFunctions. It's possible that your function doesn't return a number, try definining auxiliaryFunction(x) = mean(yourFunction(x)) and integrate auxiliaryFunction instead",
|
||||
)
|
||||
| _ =>
|
||||
Error(
|
||||
"Error 2 in Danger.optimalAllocationGivenDiminishingMarginalReturnsForManyFunctions",
|
||||
)
|
||||
}
|
||||
}
|
||||
| (_, false, _, _) =>
|
||||
Error(
|
||||
"Error in Danger.optimalAllocationGivenDiminishingMarginalReturnsForManyFunctions, funds should be greater than 0.",
|
||||
)
|
||||
| (_, _, false, _) =>
|
||||
Error(
|
||||
"Error in Danger.optimalAllocationGivenDiminishingMarginalReturnsForManyFunctions, approximateIncrement should be greater than 0.",
|
||||
)
|
||||
| (_, _, _, false) =>
|
||||
Error(
|
||||
"Error in Danger.optimalAllocationGivenDiminishingMarginalReturnsForManyFunctions, approximateIncrement should be smaller than funds amount.",
|
||||
)
|
||||
| (true, true, true, true) => {
|
||||
let applyFunctionAtPoint = (lambda, point: float) => {
|
||||
// Defined here so that it has access to environment, reducer
|
||||
let pointAsInternalExpression = FunctionRegistry_Helpers.Wrappers.evNumber(point)
|
||||
let resultAsInternalExpression = Reducer_Expression_Lambda.doLambdaCall(
|
||||
lambda,
|
||||
list{pointAsInternalExpression},
|
||||
environment,
|
||||
reducer,
|
||||
)
|
||||
switch resultAsInternalExpression {
|
||||
| Ok(IEvNumber(x)) => Ok(x)
|
||||
| Error(_) =>
|
||||
Error(
|
||||
"Error 1 in Danger.optimalAllocationGivenDiminishingMarginalReturnsForManyFunctions. It's possible that your function doesn't return a number, try definining auxiliaryFunction(x) = mean(yourFunction(x)) and integrate auxiliaryFunction instead",
|
||||
)
|
||||
| _ =>
|
||||
Error(
|
||||
"Error 2 in Danger.optimalAllocationGivenDiminishingMarginalReturnsForManyFunctions",
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
let numDivisions = Js.Math.round(funds /. approximateIncrement)
|
||||
let increment = funds /. numDivisions
|
||||
let arrayOfIncrements = Belt.Array.make(Belt.Float.toInt(numDivisions), increment)
|
||||
let numDivisions = Js.Math.round(funds /. approximateIncrement)
|
||||
let increment = funds /. numDivisions
|
||||
let arrayOfIncrements = Belt.Array.make(Belt.Float.toInt(numDivisions), increment)
|
||||
|
||||
let initAccumulator: diminishingReturnsAccumulator = Ok({
|
||||
optimalAllocations: Belt.Array.make(E.A.length(lambdas), 0.0),
|
||||
currentMarginalReturns: E.A.fmap(
|
||||
lambda => applyFunctionAtPoint(lambda, 0.0),
|
||||
lambdas,
|
||||
)->E.A.R.firstErrorOrOpen,
|
||||
})
|
||||
let initAccumulator: diminishingReturnsAccumulator = Ok({
|
||||
optimalAllocations: Belt.Array.make(E.A.length(lambdas), 0.0),
|
||||
currentMarginalReturns: E.A.fmap(
|
||||
lambda => applyFunctionAtPoint(lambda, 0.0),
|
||||
lambdas,
|
||||
)->E.A.R.firstErrorOrOpen,
|
||||
})
|
||||
|
||||
let optimalAllocationEndAccumulator = E.A.reduce(arrayOfIncrements, initAccumulator, (
|
||||
acc,
|
||||
newIncrement,
|
||||
) => {
|
||||
switch acc {
|
||||
| Ok(accInner) => {
|
||||
let oldMarginalReturnsWrapped = accInner.currentMarginalReturns
|
||||
let newAccWrapped = switch oldMarginalReturnsWrapped {
|
||||
| Ok(oldMarginalReturns) => {
|
||||
let indexOfBiggestDMR = findBiggestElementIndex(oldMarginalReturns)
|
||||
let newOptimalAllocations = Belt.Array.copy(accInner.optimalAllocations)
|
||||
let newOptimalAllocationsi =
|
||||
newOptimalAllocations[indexOfBiggestDMR] +. newIncrement
|
||||
newOptimalAllocations[indexOfBiggestDMR] = newOptimalAllocationsi
|
||||
let lambdai = lambdas[indexOfBiggestDMR]
|
||||
let newMarginalResultsLambdai = applyFunctionAtPoint(
|
||||
lambdai,
|
||||
newOptimalAllocationsi,
|
||||
)
|
||||
let newCurrentMarginalReturns = switch newMarginalResultsLambdai {
|
||||
| Ok(value) => {
|
||||
let result = Belt.Array.copy(oldMarginalReturns)
|
||||
result[indexOfBiggestDMR] = value
|
||||
Ok(result)
|
||||
let optimalAllocationEndAccumulator = E.A.reduce(arrayOfIncrements, initAccumulator, (
|
||||
acc,
|
||||
newIncrement,
|
||||
) => {
|
||||
switch acc {
|
||||
| Ok(accInner) => {
|
||||
let oldMarginalReturnsWrapped = accInner.currentMarginalReturns
|
||||
let newAccWrapped = switch oldMarginalReturnsWrapped {
|
||||
| Ok(oldMarginalReturns) => {
|
||||
let indexOfBiggestDMR = findBiggestElementIndex(oldMarginalReturns)
|
||||
let newOptimalAllocations = Belt.Array.copy(accInner.optimalAllocations)
|
||||
let newOptimalAllocationsi =
|
||||
newOptimalAllocations[indexOfBiggestDMR] +. newIncrement
|
||||
newOptimalAllocations[indexOfBiggestDMR] = newOptimalAllocationsi
|
||||
let lambdai = lambdas[indexOfBiggestDMR]
|
||||
let newMarginalResultsLambdai = applyFunctionAtPoint(
|
||||
lambdai,
|
||||
newOptimalAllocationsi,
|
||||
)
|
||||
let newCurrentMarginalReturns = switch newMarginalResultsLambdai {
|
||||
| Ok(value) => {
|
||||
let result = Belt.Array.copy(oldMarginalReturns)
|
||||
result[indexOfBiggestDMR] = value
|
||||
Ok(result)
|
||||
}
|
||||
| Error(b) => Error(b)
|
||||
}
|
||||
|
||||
let newAcc: diminishingReturnsAccumulatorInner = {
|
||||
optimalAllocations: newOptimalAllocations,
|
||||
currentMarginalReturns: newCurrentMarginalReturns,
|
||||
}
|
||||
Ok(newAcc)
|
||||
}
|
||||
| Error(b) => Error(b)
|
||||
}
|
||||
|
||||
let newAcc: diminishingReturnsAccumulatorInner = {
|
||||
optimalAllocations: newOptimalAllocations,
|
||||
currentMarginalReturns: newCurrentMarginalReturns,
|
||||
}
|
||||
Ok(newAcc)
|
||||
newAccWrapped
|
||||
}
|
||||
| Error(b) => Error(b)
|
||||
}
|
||||
newAccWrapped
|
||||
})
|
||||
|
||||
let optimalAllocationResult = switch optimalAllocationEndAccumulator {
|
||||
| Ok(inner) =>
|
||||
Ok(FunctionRegistry_Helpers.Wrappers.evArrayOfEvNumber(inner.optimalAllocations))
|
||||
| Error(b) => Error(b)
|
||||
}
|
||||
| Error(b) => Error(b)
|
||||
|
||||
optimalAllocationResult
|
||||
}
|
||||
})
|
||||
|
||||
let optimalAllocationResult = switch optimalAllocationEndAccumulator {
|
||||
| Ok(inner) =>
|
||||
Ok(FunctionRegistry_Helpers.Wrappers.evArrayOfEvNumber(inner.optimalAllocations))
|
||||
| Error(b) => Error(b)
|
||||
}
|
||||
|
||||
optimalAllocationResult
|
||||
// let result = [0.0, 0.0]->FunctionRegistry_Helpers.Wrappers.evArrayOfEvNumber->Ok
|
||||
// result
|
||||
// ^ helper with the same type as what the result should be. Useful for debugging.
|
||||
}
|
||||
}
|
||||
module Lib = {
|
||||
|
|
Loading…
Reference in New Issue
Block a user