First pass at nested multimodals, still needs lots of cleanup

This commit is contained in:
Sebastian Kosch 2020-06-09 21:28:03 -07:00
parent a9d52e2c5c
commit eb0ffdc6c3
2 changed files with 239 additions and 88 deletions

View File

@ -148,6 +148,10 @@ module MathAdtToDistDst = {
Ok(`Simple(`Triangular({low, medium, high}))) Ok(`Simple(`Triangular({low, medium, high})))
| _ => Error("Wrong number of variables in triangle distribution"); | _ => Error("Wrong number of variables in triangle distribution");
/*let add: array(arg) => result(SymbolicDist.bigDist, string) =
fun
| */
let multiModal = let multiModal =
( (
args: array(result(SymbolicDist.bigDist, string)), args: array(result(SymbolicDist.bigDist, string)),
@ -158,12 +162,15 @@ module MathAdtToDistDst = {
args args
|> E.A.fmap( |> E.A.fmap(
fun fun
| Ok(`Simple(n)) => Ok(n) | Ok(`Simple(d)) => Ok(`Simple(d))
| Ok(`PointwiseCombination(dists)) => Ok(`PointwiseCombination(dists))
| Error(e) => Error(e) | Error(e) => Error(e)
| Ok(k) => Error(SymbolicDist.toString(k)), | _ => Error("Unexpected dist")
); );
let firstWithError = dists |> Belt.Array.getBy(_, Belt.Result.isError); let firstWithError = dists |> Belt.Array.getBy(_, Belt.Result.isError);
let withoutErrors = dists |> E.A.fmap(E.R.toOption) |> E.A.O.concatSomes; let withoutErrors = dists |> E.A.fmap(E.R.toOption) |> E.A.O.concatSomes;
switch (firstWithError) { switch (firstWithError) {
| Some(Error(e)) => Error(e) | Some(Error(e)) => Error(e)
| None when withoutErrors |> E.A.length == 0 => | None when withoutErrors |> E.A.length == 0 =>
@ -186,12 +193,12 @@ module MathAdtToDistDst = {
) )
|> E.A.O.concatSomes |> E.A.O.concatSomes
let outputs = Samples.T.fromSamples(samples); let outputs = Samples.T.fromSamples(samples);
let pdf = outputs.shape |> E.O.bind(_,Distributions.Shape.T.toContinuous) let pdf = outputs.shape |> E.O.bind(_,Distributions.Shape.T.toContinuous);
let shape = pdf |> E.O.fmap(pdf => { let shape = pdf |> E.O.fmap(pdf => {
let _pdf = Distributions.Continuous.T.scaleToIntegralSum(~cache=None, ~intendedSum=1.0, pdf); let _pdf = Distributions.Continuous.T.scaleToIntegralSum(~cache=None, ~intendedSum=1.0, pdf);
let cdf = Distributions.Continuous.T.integral(~cache=None, _pdf); let cdf = Distributions.Continuous.T.integral(~cache=None, _pdf);
SymbolicDist.ContinuousShape.make(_pdf, cdf) SymbolicDist.ContinuousShape.make(_pdf, cdf)
}) });
switch(shape){ switch(shape){
| Some(s) => Ok(`Simple(`ContinuousShape(s))) | Some(s) => Ok(`Simple(`ContinuousShape(s)))
| None => Error("Rendering did not work") | None => Error("Rendering did not work")
@ -238,6 +245,7 @@ module MathAdtToDistDst = {
let dists = possibleDists |> E.A.fmap(functionParser); let dists = possibleDists |> E.A.fmap(functionParser);
multiModal(dists, weights); multiModal(dists, weights);
} }
//| Fn({name: "add", args}) => add(args)
| Fn({name}) => Error(name ++ ": function not supported") | Fn({name}) => Error(name ++ ": function not supported")
| _ => { | _ => {
Error("This type not currently supported"); Error("This type not currently supported");
@ -255,19 +263,32 @@ module MathAdtToDistDst = {
| Object(_) => Error("Object not valid as top level") | Object(_) => Error("Object not valid as top level")
); );
let run = (r): result(SymbolicDist.bigDist, string) => let run = (r): result(SymbolicDist.bigDist, string) => {
r |> MathAdtCleaner.run |> topLevel; let o = r |> MathAdtCleaner.run |> topLevel;
Js.log2("parser output", o);
o
};
}; };
let fromString = str => { let fromString = str => {
/* We feed the user-typed string into Mathjs.parseMath,
which returns a JSON with (hopefully) a single-element array.
This array element is the top-level node of a nested-object tree
representing the functions/arguments/values/etc. in the string.
The function MathJsonToMathJsAdt then recursively unpacks this JSON into a typed data structure we can use.
Inside of this function, MathAdtToDistDst is called whenever a distribution function is encountered.
*/
let mathJsToJson = Mathjs.parseMath(str); let mathJsToJson = Mathjs.parseMath(str);
let mathJsParse = let mathJsParse =
E.R.bind(mathJsToJson, r => E.R.bind(mathJsToJson, r => {
Js.log2("parsed", r);
switch (MathJsonToMathJsAdt.run(r)) { switch (MathJsonToMathJsAdt.run(r)) {
| Some(r) => Ok(r) | Some(r) => Ok(r)
| None => Error("MathJsParse Error") | None => Error("MathJsParse Error")
} }
); });
let value = E.R.bind(mathJsParse, MathAdtToDistDst.run); let value = E.R.bind(mathJsParse, MathAdtToDistDst.run);
value; value;
}; };

View File

@ -47,12 +47,44 @@ type dist = [
| `Cauchy(cauchy) | `Cauchy(cauchy)
| `Triangular(triangular) | `Triangular(triangular)
| `ContinuousShape(continuousShape) | `ContinuousShape(continuousShape)
| `Float(float) | `Float(float) // Dirac delta at x. Practically useful only in the context of multimodals.
]; ];
type pointwiseAdd = array((dist, float)); /* Build a tree.
type bigDist = [ | `Simple(dist) | `PointwiseCombination(pointwiseAdd)]; Multiple operations possible:
- PointwiseSum(Scalar, Scalar)
- PointwiseSum(WeightedDist, WeightedDist)
- PointwiseProduct(Scalar, Scalar)
- PointwiseProduct(Scalar, WeightedDist)
- PointwiseProduct(WeightedDist, WeightedDist)
- IndependentVariableSum(WeightedDist, WeightedDist) [i.e., convolution]
- IndependentVariableProduct(WeightedDist, WeightedDist) [i.e. distribution product]
*/
type weightedDist = (float, dist);
type bigDistTree =
/* | DistLeaf(dist) */
/* | ScalarLeaf(float) */
/* | PointwiseScalarDistProduct(DistLeaf(d), ScalarLeaf(s)) */
| WeightedDistLeaf(weightedDist)
| PointwiseNormalizedDistSum(array(bigDistTree));
let rec treeIntegral = item => {
switch (item) {
| WeightedDistLeaf((w, d)) => w
| PointwiseNormalizedDistSum(childTrees) =>
childTrees |> E.A.fmap(treeIntegral) |> E.A.Floats.sum
};
};
/* bigDist can either be a single distribution, or a
PointwiseCombination, i.e. an array of (dist, weight) tuples */
type bigDist = [ | `Simple(dist) | `PointwiseCombination(pointwiseAdd)]
and pointwiseAdd = array((bigDist, float));
module ContinuousShape = { module ContinuousShape = {
type t = continuousShape; type t = continuousShape;
@ -255,7 +287,6 @@ module GenericSimple = {
| `Uniform({high}) => high | `Uniform({high}) => high
| `Float(n) => n; | `Float(n) => n;
/* This function returns a list of x's at which to evaluate the overall distribution (for rendering). /* This function returns a list of x's at which to evaluate the overall distribution (for rendering).
This function is called separately for each individual distribution. This function is called separately for each individual distribution.
@ -267,17 +298,16 @@ module GenericSimple = {
*/ */
let interpolateXs = let interpolateXs =
(~xSelection: [ | `Linear | `ByWeight]=`Linear, dist: dist, sampleCount) => { (~xSelection: [ | `Linear | `ByWeight]=`Linear, dist: dist, sampleCount) => {
switch (xSelection, dist) { switch (xSelection, dist) {
| (`Linear, _) => E.A.Floats.range(min(dist), max(dist), sampleCount) | (`Linear, _) => E.A.Floats.range(min(dist), max(dist), sampleCount)
| (`ByWeight, `Uniform(n)) => | (`ByWeight, `Uniform(n)) =>
// In `ByWeight mode, uniform distributions get special treatment because we need two x's // In `ByWeight mode, uniform distributions get special treatment because we need two x's
// on either side for proper rendering (just left and right of the discontinuities). // on either side for proper rendering (just left and right of the discontinuities).
let dx = 0.00001 *. (n.high -. n.low); let dx = 0.00001 *. (n.high -. n.low);
[|n.low -. dx, n.low +. dx, n.high -. dx, n.high +. dx|] [|n.low -. dx, n.low +. dx, n.high -. dx, n.high +. dx|];
| (`ByWeight, _) => | (`ByWeight, _) =>
let ys = E.A.Floats.range(minCdfValue, maxCdfValue, sampleCount) let ys = E.A.Floats.range(minCdfValue, maxCdfValue, sampleCount);
ys |> E.A.fmap(y => inv(y, dist)) ys |> E.A.fmap(y => inv(y, dist));
}; };
}; };
@ -299,90 +329,190 @@ module GenericSimple = {
module PointwiseAddDistributionsWeighted = { module PointwiseAddDistributionsWeighted = {
type t = pointwiseAdd; type t = pointwiseAdd;
let normalizeWeights = (dists: t) => { let normalizeWeights = (weightedDists: t) => {
let total = dists |> E.A.fmap(snd) |> E.A.Floats.sum; let total = weightedDists |> E.A.fmap(snd) |> E.A.Floats.sum;
dists |> E.A.fmap(((a, b)) => (a, b /. total)); weightedDists |> E.A.fmap(((d, w)) => (d, w /. total));
}; };
let pdf = (x: float, dists: t) => let rec pdf = (x: float, weightedNormalizedDists: t) =>
dists weightedNormalizedDists
|> E.A.fmap(((e, w)) => GenericSimple.pdf(x, e) *. w) |> E.A.fmap(((d, w)) => {
switch (d) {
| `PointwiseCombination(ts) => pdf(x, ts) *. w
| `Simple(d) => GenericSimple.pdf(x, d) *. w
}
})
|> E.A.Floats.sum; |> E.A.Floats.sum;
let min = (dists: t) => // TODO: perhaps rename into minCdfX?
dists |> E.A.fmap(d => d |> fst |> GenericSimple.min) |> E.A.min; // TODO: how should nonexistent min values be handled? They should never happen
let rec min = (dists: t) =>
dists
|> E.A.fmap(((d, w)) => {
switch (d) {
| `PointwiseCombination(ts) => E.O.toExn("Dist has no min", min(ts))
| `Simple(d) => GenericSimple.min(d)
}
})
|> E.A.min;
let max = (dists: t) => // TODO: perhaps rename into minCdfX?
dists |> E.A.fmap(d => d |> fst |> GenericSimple.max) |> E.A.max; let rec max = (dists: t) =>
dists
|> E.A.fmap(((d, w)) => {
switch (d) {
| `PointwiseCombination(ts) => E.O.toExn("Dist has no max", max(ts))
| `Simple(d) => GenericSimple.max(d)
}
})
|> E.A.max;
let discreteShape = (dists: t, sampleCount: int) => {
/*let rec discreteShape = (dists: t, sampleCount: int) => {
let discrete = let discrete =
dists dists
|> E.A.fmap(((r, e)) => |> E.A.fmap(((x, w)) => {
r switch (d) {
| `Float(d) => Some((d, w)) // if the distribution is just a number, then the weight is considered the y
| _ => None
}
})
|> E.A.O.concatSomes
|> E.A.fmap(((x, y)) =>
({xs: [|x|], ys: [|y|]}: DistTypes.xyShape)
)
// take an array of xyShapes and combine them together
//* r
|> ( |> (
fun fun
| `Float(r) => Some((r, e)) | `Float(r) => Some((r, e))
| _ => None | _ => None
) )
) )*/
|> E.A.O.concatSomes
|> E.A.fmap(((x, y)) =>
({xs: [|x|], ys: [|y|]}: DistTypes.xyShape)
)
|> Distributions.Discrete.reduce((+.)); |> Distributions.Discrete.reduce((+.));
discrete; discrete;
}; };*/
let continuousShape = (dists: t, sampleCount: int) => {
let xs = let rec findContinuousXs = (dists: t, sampleCount: int) => {
// we need to go through the tree of distributions and, for the continuous ones, find the xs at which
// later, all distributions will get evaluated.
// we want to accumulate a set of xs.
let xs: array(float) =
dists dists
|> E.A.fmap(r => |> E.A.fold_left((accXs, (d, w)) => {
r switch (d) {
|> fst | `Simple(t) when (GenericSimple.contType(t) == `Discrete) => accXs
|> GenericSimple.interpolateXs( | `Simple(d) => {
~xSelection=`ByWeight, let xs = GenericSimple.interpolateXs(~xSelection=`ByWeight, d, sampleCount)
_,
sampleCount / (dists |> E.A.length), E.A.append(accXs, xs)
) }
) | `PointwiseCombination(ts) => {
|> E.A.concatMany; let xs = findContinuousXs(ts, sampleCount);
xs |> Array.fast_sort(compare); E.A.append(accXs, xs)
let ys = xs |> E.A.fmap(pdf(_, dists)); }
XYShape.T.fromArrays(xs, ys) |> Distributions.Continuous.make(`Linear, _); }
}, [||]);
xs
}; };
let toShape = (dists: t, sampleCount: int) => { /* Accumulate (accContShapes, accDistShapes), each of which is an array of {xs, ys} shapes. */
let rec accumulateContAndDiscShapes = (dists: t, continuousXs: array(float), currentWeight) => {
let normalized = normalizeWeights(dists); let normalized = normalizeWeights(dists);
let continuous =
normalized normalized
|> E.A.filter(((r, _)) => GenericSimple.contType(r) == `Continuous) |> E.A.fold_left(((accContShapes: array(DistTypes.xyShape), accDiscShapes: array(DistTypes.xyShape)), (d, w)) => {
|> continuousShape(_, sampleCount); switch (d) {
let discrete =
normalized | `Simple(`Float(x)) => {
|> E.A.filter(((r, _)) => GenericSimple.contType(r) == `Discrete) let ds: DistTypes.xyShape = {xs: [|x|], ys: [|w *. currentWeight|]};
|> discreteShape(_, sampleCount); (accContShapes, E.A.append(accDiscShapes, [|ds|]))
let shape = }
MixedShapeBuilder.buildSimple(~continuous=Some(continuous), ~discrete);
| `Simple(d) when (GenericSimple.contType(d) == `Continuous) => {
let ys = continuousXs |> E.A.fmap(x => GenericSimple.pdf(x, d) *. w *. currentWeight);
let cs = XYShape.T.fromArrays(continuousXs, ys);
(E.A.append(accContShapes, [|cs|]), accDiscShapes)
}
| `Simple(d) => (accContShapes, accDiscShapes) // default -- should never happen
| `PointwiseCombination(ts) => {
let (cs, ds) = accumulateContAndDiscShapes(ts, continuousXs, w *. currentWeight);
(E.A.append(accContShapes, cs), E.A.append(accDiscShapes, ds))
}
}
}, ([||]: array(DistTypes.xyShape), [||]: array(DistTypes.xyShape)))
};
/*
We will assume that each dist (of t) in the multimodal has a total of one.
We can therefore normalize the weights of the parts.
However, a multimodal can consist of both discrete and continuous shapes.
These need to be added and collected individually.
*/
let toShape = (dists: t, sampleCount: int) => {
let continuousXs = findContinuousXs(dists, sampleCount);
continuousXs |> Array.fast_sort(compare);
let (contShapes, distShapes) = accumulateContAndDiscShapes(dists, continuousXs, 1.0);
let combinedContinuous = contShapes
|> E.A.fold_left((shapeAcc: DistTypes.xyShape, shape: DistTypes.xyShape) => {
let ys = E.A.fmapi((i, y) => y +. shape.ys[i], shapeAcc.ys);
{xs: continuousXs, ys: ys}
}, {xs: continuousXs, ys: Array.make(Array.length(continuousXs), 0.0)})
|> Distributions.Continuous.make(`Linear);
let combinedDiscrete = Distributions.Discrete.reduce((+.), distShapes)
let shape = MixedShapeBuilder.buildSimple(~continuous=Some(combinedContinuous), ~discrete=combinedDiscrete);
shape |> E.O.toExt(""); shape |> E.O.toExt("");
}; };
let toString = (dists: t) => { let rec toString = (dists: t): string => {
let distString = let distString =
dists dists
|> E.A.fmap(d => GenericSimple.toString(fst(d))) |> E.A.fmap(((d, _)) =>
|> Js.Array.joinWith(","); switch (d) {
let weights = | `Simple(d) => GenericSimple.toString(d)
dists | `PointwiseCombination(ts: t) => ts |> toString
|> E.A.fmap(d => }
snd(d) |> Js.Float.toPrecisionWithPrecision(~digits=2)
) )
|> Js.Array.joinWith(","); |> Js.Array.joinWith(",");
// mm(normal(0,1), normal(1,2)) => "multimodal(normal(0,1), normal(1,2), )
let weights =
dists
|> E.A.fmap(((_, w)) =>
Js.Float.toPrecisionWithPrecision(w, ~digits=2)
)
|> Js.Array.joinWith(",");
{j|multimodal($distString, [$weights])|j}; {j|multimodal($distString, [$weights])|j};
}; };
}; };
// assume that recursive pointwiseNormalizedDistSums are the only type of operation there is.
// in the original, it was a list of (dist, weight) tuples. Now, it's a tree of (dist, weight) tuples, just that every
// dist can be either a GenericSimple or another PointwiseAdd.
/*let toString = (r: bigDistTree) => {
switch (r) {
| WeightedDistLeaf((w, d)) => GenericWeighted.toString(w) // "normal "
| PointwiseNormalizedDistSum(childTrees) => childTrees |> E.A.fmap(toString) |> Js.Array.joinWith("")
}
}*/
let toString = (r: bigDist) => let toString = (r: bigDist) =>
// we need to recursively create the string representation of the tree.
r r
|> ( |> (
fun fun