Merge branch 'develop' into multiple-charts
This commit is contained in:
commit
e7a1fe1c17
|
@ -1,4 +0,0 @@
|
|||
open Jest
|
||||
open Expect
|
||||
|
||||
test("todo", () => expect("1")->toBe("1"))
|
|
@ -68,3 +68,5 @@ myTypeCheckTest(test, "number | string", "1", "Ok")
|
|||
myTypeCheckTest(test, "date | string", "1", "Expected type: (date | string) but got: 1")
|
||||
myTypeCheckTest(test, "number<-min(10)", "10", "Ok")
|
||||
myTypeCheckTest(test, "number<-min(10)", "0", "Expected type: number<-min(10) but got: 0")
|
||||
myTypeCheckTest(test, "any", "0", "Ok")
|
||||
myTypeCheckTest(test, "any", "'a'", "Ok")
|
||||
|
|
|
@ -0,0 +1,123 @@
|
|||
open Jest
|
||||
open Expect
|
||||
|
||||
module DispatchT = Reducer_Dispatch_T
|
||||
module Expression = Reducer_Expression
|
||||
module ExpressionT = Reducer_Expression_T
|
||||
module TypeCompile = Reducer_Type_Compile
|
||||
module TypeChecker = Reducer_Type_TypeChecker
|
||||
open ReducerInterface_InternalExpressionValue
|
||||
|
||||
type errorValue = Reducer_ErrorValue.errorValue
|
||||
|
||||
// Let's build a function to replace switch statements
|
||||
// In dispatchChainPiece, we execute an return the result of execution if there is a type match.
|
||||
// Otherwise we return None so that the call chain can continue.
|
||||
// So we want to build a function like
|
||||
// dispatchChainPiece = (call: functionCall, environment): option<result<internalExpressionValue, errorValue>>
|
||||
|
||||
// Now lets make the dispatchChainPiece itself.
|
||||
// Note that I am not passing the reducer to the dispatchChainPiece as an argument because it is in the context anyway.
|
||||
// Keep in mind that reducerFn is necessary for map/reduce so dispatchChainPiece should have a reducerFn in context.
|
||||
|
||||
let makeMyDispatchChainPiece = (reducer: ExpressionT.reducerFn): DispatchT.dispatchChainPiece => {
|
||||
// Let's have a pure implementations
|
||||
module Implementation = {
|
||||
let stringConcat = (a: string, b: string): string => Js.String2.concat(a, b)
|
||||
let arrayConcat = (
|
||||
a: Js.Array2.t<internalExpressionValue>,
|
||||
b: Js.Array2.t<internalExpressionValue>,
|
||||
): Js.Array2.t<internalExpressionValue> => Js.Array2.concat(a, b)
|
||||
let plot = _r => "yey, plotted"
|
||||
}
|
||||
|
||||
let extractStringString = args =>
|
||||
switch args {
|
||||
| [IEvString(a), IEvString(b)] => (a, b)
|
||||
| _ => raise(Reducer_Exception.ImpossibleException("extractStringString developer error"))
|
||||
}
|
||||
|
||||
let extractArrayArray = args =>
|
||||
switch args {
|
||||
| [IEvArray(a), IEvArray(b)] => (a, b)
|
||||
| _ => raise(Reducer_Exception.ImpossibleException("extractArrayArray developer error"))
|
||||
}
|
||||
|
||||
// Let's bridge the pure implementation to expression values
|
||||
module Bridge = {
|
||||
let stringConcat: DispatchT.genericIEvFunction = (args, _environment) => {
|
||||
let (a, b) = extractStringString(args)
|
||||
Implementation.stringConcat(a, b)->IEvString->Ok
|
||||
}
|
||||
let arrayConcat: DispatchT.genericIEvFunction = (args, _environment) => {
|
||||
let (a, b) = extractArrayArray(args)
|
||||
Implementation.arrayConcat(a, b)->IEvArray->Ok
|
||||
}
|
||||
let plot: DispatchT.genericIEvFunction = (args, _environment) => {
|
||||
switch args {
|
||||
// Just assume that we are doing the business of extracting and converting the deep record
|
||||
| [IEvRecord(_)] => Implementation.plot({"title": "This is a plot"})->IEvString->Ok
|
||||
| _ => raise(Reducer_Exception.ImpossibleException("plot developer error"))
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// concat functions are to illustrate polymoprhism. And the plot function is to illustrate complex types
|
||||
let jumpTable = [
|
||||
(
|
||||
"concat",
|
||||
TypeCompile.fromTypeExpressionExn("string=>string=>string", reducer),
|
||||
Bridge.stringConcat,
|
||||
),
|
||||
(
|
||||
"concat",
|
||||
TypeCompile.fromTypeExpressionExn("[any]=>[any]=>[any]", reducer),
|
||||
Bridge.arrayConcat,
|
||||
),
|
||||
(
|
||||
"plot",
|
||||
TypeCompile.fromTypeExpressionExn(
|
||||
// Nested complex types are available
|
||||
// records {property: type}
|
||||
// arrays [type]
|
||||
// tuples [type, type]
|
||||
// <- type contracts are available naturally and they become part of dispatching
|
||||
// Here we are not enumerating the possibilities because type checking has a dedicated test
|
||||
"{title: string, line: {width: number, color: string}}=>string",
|
||||
reducer,
|
||||
),
|
||||
Bridge.plot,
|
||||
),
|
||||
]
|
||||
|
||||
//Here we are creating a dispatchChainPiece function that will do the actual dispatch from the jumpTable
|
||||
Reducer_Dispatch_ChainPiece.makeFromTypes(jumpTable)
|
||||
}
|
||||
|
||||
// And finally, let's write a library dispatch for our external library
|
||||
// Exactly the same as the one used in real life
|
||||
let _dispatch = (
|
||||
call: functionCall,
|
||||
environment,
|
||||
reducer: Reducer_Expression_T.reducerFn,
|
||||
chain,
|
||||
): result<internalExpressionValue, 'e> => {
|
||||
let dispatchChainPiece = makeMyDispatchChainPiece(reducer)
|
||||
dispatchChainPiece(call, environment)->E.O2.defaultFn(() => chain(call, environment, reducer))
|
||||
}
|
||||
|
||||
// What is important about this implementation?
|
||||
// A) Exactly the same function jump table can be used to create type guarded lambda functions
|
||||
// Guarded lambda functions will be the basis of the next version of Squiggle
|
||||
// B) Complicated recursive record types are not a problem.
|
||||
|
||||
describe("Type Dispatch", () => {
|
||||
let reducerFn = Expression.reduceExpression
|
||||
let dispatchChainPiece = makeMyDispatchChainPiece(reducerFn)
|
||||
test("stringConcat", () => {
|
||||
let call: functionCall = ("concat", [IEvString("hello"), IEvString("world")])
|
||||
|
||||
let result = dispatchChainPiece(call, defaultEnvironment)
|
||||
expect(result)->toEqual(Some(Ok(IEvString("helloworld"))))
|
||||
})
|
||||
})
|
|
@ -0,0 +1,19 @@
|
|||
module TypeChecker = Reducer_Type_TypeChecker
|
||||
module T = Reducer_Dispatch_T
|
||||
open ReducerInterface_InternalExpressionValue
|
||||
|
||||
type errorValue = Reducer_ErrorValue.errorValue
|
||||
|
||||
let makeFromTypes = jumpTable => {
|
||||
let dispatchChainPiece: T.dispatchChainPiece = ((fnName, fnArgs): functionCall, environment) => {
|
||||
let jumpTableEntry = jumpTable->Js.Array2.find(elem => {
|
||||
let (candidName, candidType, _) = elem
|
||||
candidName == fnName && TypeChecker.checkITypeArgumentsBool(candidType, fnArgs)
|
||||
})
|
||||
switch jumpTableEntry {
|
||||
| Some((_, _, bridgeFn)) => bridgeFn(fnArgs, environment)->Some
|
||||
| _ => None
|
||||
}
|
||||
}
|
||||
dispatchChainPiece
|
||||
}
|
|
@ -0,0 +1,20 @@
|
|||
module InternalExpressionValue = ReducerInterface_InternalExpressionValue
|
||||
module ExpressionT = Reducer_Expression_T
|
||||
|
||||
// Each piece of the dispatch chain computes the result or returns None so that the chain can continue
|
||||
type dispatchChainPiece = (
|
||||
InternalExpressionValue.functionCall,
|
||||
InternalExpressionValue.environment,
|
||||
) => option<result<InternalExpressionValue.t, Reducer_ErrorValue.errorValue>>
|
||||
|
||||
type dispatchChainPieceWithReducer = (
|
||||
InternalExpressionValue.functionCall,
|
||||
InternalExpressionValue.environment,
|
||||
ExpressionT.reducerFn,
|
||||
) => option<result<InternalExpressionValue.t, Reducer_ErrorValue.errorValue>>
|
||||
|
||||
// This is a switch statement case implementation: get the arguments and compute the result
|
||||
type genericIEvFunction = (
|
||||
array<InternalExpressionValue.t>,
|
||||
InternalExpressionValue.environment,
|
||||
) => result<InternalExpressionValue.t, Reducer_ErrorValue.errorValue>
|
|
@ -38,3 +38,12 @@ let fromTypeExpression = (
|
|||
(reducerFn: ExpressionT.reducerFn),
|
||||
)->Belt.Result.map(T.fromIEvValue)
|
||||
}
|
||||
|
||||
let fromTypeExpressionExn = (
|
||||
typeExpressionSourceCode: string,
|
||||
reducerFn: ExpressionT.reducerFn,
|
||||
): T.t =>
|
||||
switch fromTypeExpression(typeExpressionSourceCode, reducerFn) {
|
||||
| Ok(value) => value
|
||||
| _ => `Cannot compile ${typeExpressionSourceCode}`->Reducer_Exception.ImpossibleException->raise
|
||||
}
|
||||
|
|
|
@ -7,10 +7,15 @@ open InternalExpressionValue
|
|||
let rec isITypeOf = (anIType: T.iType, aValue): result<bool, T.typeErrorValue> => {
|
||||
let caseTypeIdentifier = (anUpperTypeName, aValue) => {
|
||||
let aTypeName = anUpperTypeName->Js.String2.toLowerCase
|
||||
let valueTypeName = aValue->valueToValueType->valueTypeToString->Js.String2.toLowerCase
|
||||
switch aTypeName == valueTypeName {
|
||||
| true => Ok(true)
|
||||
| false => T.TypeMismatch(anIType, aValue)->Error
|
||||
switch aTypeName {
|
||||
| "any" => Ok(true)
|
||||
| _ => {
|
||||
let valueTypeName = aValue->valueToValueType->valueTypeToString->Js.String2.toLowerCase
|
||||
switch aTypeName == valueTypeName {
|
||||
| true => Ok(true)
|
||||
| false => T.TypeMismatch(anIType, aValue)->Error
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -149,6 +154,13 @@ let checkITypeArguments = (anIType: T.iType, args: array<InternalExpressionValue
|
|||
}
|
||||
}
|
||||
|
||||
let checkITypeArgumentsBool = (anIType: T.iType, args: array<InternalExpressionValue.t>): bool => {
|
||||
switch checkITypeArguments(anIType, args) {
|
||||
| Ok(_) => true
|
||||
| _ => false
|
||||
}
|
||||
}
|
||||
|
||||
let checkArguments = (
|
||||
typeExpressionSourceCode: string,
|
||||
args: array<InternalExpressionValue.t>,
|
||||
|
|
Loading…
Reference in New Issue
Block a user