Added additional distributions
This commit is contained in:
parent
f7e3643a1e
commit
e17e2aca2e
|
@ -77,7 +77,7 @@ let make = () => {
|
||||||
~validationStrategy=OnDemand,
|
~validationStrategy=OnDemand,
|
||||||
~schema,
|
~schema,
|
||||||
~onSubmit=({state}) => {None},
|
~onSubmit=({state}) => {None},
|
||||||
~initialState={guesstimatorString: "mm(1 to 10000)"},
|
~initialState={guesstimatorString: "mm(1 to 1000)"},
|
||||||
(),
|
(),
|
||||||
);
|
);
|
||||||
|
|
||||||
|
|
|
@ -27,7 +27,31 @@ type beta = {
|
||||||
[@bs.meth] "inv": (float, float, float) => float,
|
[@bs.meth] "inv": (float, float, float) => float,
|
||||||
[@bs.meth] "sample": (float, float) => float,
|
[@bs.meth] "sample": (float, float) => float,
|
||||||
};
|
};
|
||||||
|
type exponential = {
|
||||||
|
.
|
||||||
|
[@bs.meth] "pdf": (float, float) => float,
|
||||||
|
[@bs.meth] "cdf": (float, float) => float,
|
||||||
|
[@bs.meth] "inv": (float, float) => float,
|
||||||
|
[@bs.meth] "sample": float => float,
|
||||||
|
};
|
||||||
|
type cauchy = {
|
||||||
|
.
|
||||||
|
[@bs.meth] "pdf": (float, float, float) => float,
|
||||||
|
[@bs.meth] "cdf": (float, float, float) => float,
|
||||||
|
[@bs.meth] "inv": (float, float, float) => float,
|
||||||
|
[@bs.meth] "sample": (float, float) => float,
|
||||||
|
};
|
||||||
|
type triangular = {
|
||||||
|
.
|
||||||
|
[@bs.meth] "pdf": (float, float, float, float) => float,
|
||||||
|
[@bs.meth] "cdf": (float, float, float, float) => float,
|
||||||
|
[@bs.meth] "inv": (float, float, float, float) => float,
|
||||||
|
[@bs.meth] "sample": (float, float, float) => float,
|
||||||
|
};
|
||||||
[@bs.module "jStat"] external normal: normal = "normal";
|
[@bs.module "jStat"] external normal: normal = "normal";
|
||||||
[@bs.module "jStat"] external lognormal: lognormal = "lognormal";
|
[@bs.module "jStat"] external lognormal: lognormal = "lognormal";
|
||||||
[@bs.module "jStat"] external uniform: uniform = "uniform";
|
[@bs.module "jStat"] external uniform: uniform = "uniform";
|
||||||
[@bs.module "jStat"] external beta: beta = "beta";
|
[@bs.module "jStat"] external beta: beta = "beta";
|
||||||
|
[@bs.module "jStat"] external exponential: exponential = "exponential";
|
||||||
|
[@bs.module "jStat"] external cauchy: cauchy = "cauchy";
|
||||||
|
[@bs.module "jStat"] external triangular: triangular = "triangular";
|
|
@ -124,6 +124,23 @@ module MathAdtToDistDst = {
|
||||||
| [|Value(alpha), Value(beta)|] => Ok(`Simple(`Beta({alpha, beta})))
|
| [|Value(alpha), Value(beta)|] => Ok(`Simple(`Beta({alpha, beta})))
|
||||||
| _ => Error("Wrong number of variables in lognormal distribution");
|
| _ => Error("Wrong number of variables in lognormal distribution");
|
||||||
|
|
||||||
|
let exponential: array(arg) => result(SymbolicDist.bigDist, string) =
|
||||||
|
fun
|
||||||
|
| [|Value(rate)|] => Ok(`Simple(`Exponential({rate: rate})))
|
||||||
|
| _ => Error("Wrong number of variables in Exponential distribution");
|
||||||
|
|
||||||
|
let cauchy: array(arg) => result(SymbolicDist.bigDist, string) =
|
||||||
|
fun
|
||||||
|
| [|Value(local), Value(scale)|] =>
|
||||||
|
Ok(`Simple(`Cauchy({local, scale})))
|
||||||
|
| _ => Error("Wrong number of variables in cauchy distribution");
|
||||||
|
|
||||||
|
let triangular: array(arg) => result(SymbolicDist.bigDist, string) =
|
||||||
|
fun
|
||||||
|
| [|Value(low), Value(medium), Value(high)|] =>
|
||||||
|
Ok(`Simple(`Triangular({low, medium, high})))
|
||||||
|
| _ => Error("Wrong number of variables in triangle distribution");
|
||||||
|
|
||||||
let multiModal =
|
let multiModal =
|
||||||
(
|
(
|
||||||
args: array(result(SymbolicDist.bigDist, string)),
|
args: array(result(SymbolicDist.bigDist, string)),
|
||||||
|
@ -157,6 +174,9 @@ module MathAdtToDistDst = {
|
||||||
| Fn({name: "uniform", args}) => uniform(args)
|
| Fn({name: "uniform", args}) => uniform(args)
|
||||||
| Fn({name: "beta", args}) => beta(args)
|
| Fn({name: "beta", args}) => beta(args)
|
||||||
| Fn({name: "to", args}) => to_(args)
|
| Fn({name: "to", args}) => to_(args)
|
||||||
|
| Fn({name: "exponential", args}) => exponential(args)
|
||||||
|
| Fn({name: "cauchy", args}) => cauchy(args)
|
||||||
|
| Fn({name: "triangular", args}) => triangular(args)
|
||||||
| Fn({name: "mm", args}) => {
|
| Fn({name: "mm", args}) => {
|
||||||
let dists = args |> E.A.fmap(functionParser);
|
let dists = args |> E.A.fmap(functionParser);
|
||||||
let weights =
|
let weights =
|
||||||
|
|
|
@ -18,17 +18,57 @@ type beta = {
|
||||||
beta: float,
|
beta: float,
|
||||||
};
|
};
|
||||||
|
|
||||||
|
type exponential = {rate: float};
|
||||||
|
|
||||||
|
type cauchy = {
|
||||||
|
local: float,
|
||||||
|
scale: float,
|
||||||
|
};
|
||||||
|
|
||||||
|
type triangular = {
|
||||||
|
low: float,
|
||||||
|
medium: float,
|
||||||
|
high: float,
|
||||||
|
};
|
||||||
|
|
||||||
type dist = [
|
type dist = [
|
||||||
| `Normal(normal)
|
| `Normal(normal)
|
||||||
| `Beta(beta)
|
| `Beta(beta)
|
||||||
| `Lognormal(lognormal)
|
| `Lognormal(lognormal)
|
||||||
| `Uniform(uniform)
|
| `Uniform(uniform)
|
||||||
|
| `Exponential(exponential)
|
||||||
|
| `Cauchy(cauchy)
|
||||||
|
| `Triangular(triangular)
|
||||||
];
|
];
|
||||||
|
|
||||||
type pointwiseAdd = array((dist, float));
|
type pointwiseAdd = array((dist, float));
|
||||||
|
|
||||||
type bigDist = [ | `Simple(dist) | `PointwiseCombination(pointwiseAdd)];
|
type bigDist = [ | `Simple(dist) | `PointwiseCombination(pointwiseAdd)];
|
||||||
|
|
||||||
|
module Exponential = {
|
||||||
|
type t = exponential;
|
||||||
|
let pdf = (x, t: t) => Jstat.exponential##pdf(x, t.rate);
|
||||||
|
let inv = (p, t: t) => Jstat.exponential##inv(p, t.rate);
|
||||||
|
let sample = (t: t) => Jstat.exponential##sample(t.rate);
|
||||||
|
let toString = ({rate}: t) => {j|Exponential($rate)|j};
|
||||||
|
};
|
||||||
|
|
||||||
|
module Cauchy = {
|
||||||
|
type t = cauchy;
|
||||||
|
let pdf = (x, t: t) => Jstat.cauchy##pdf(x, t.local, t.scale);
|
||||||
|
let inv = (p, t: t) => Jstat.cauchy##inv(p, t.local, t.scale);
|
||||||
|
let sample = (t: t) => Jstat.cauchy##sample(t.local, t.scale);
|
||||||
|
let toString = ({local, scale}: t) => {j|Cauchy($local, $scale)|j};
|
||||||
|
};
|
||||||
|
|
||||||
|
module Triangular = {
|
||||||
|
type t = triangular;
|
||||||
|
let pdf = (x, t: t) => Jstat.triangular##pdf(x, t.low, t.high, t.medium);
|
||||||
|
let inv = (p, t: t) => Jstat.triangular##inv(p, t.low, t.high, t.medium);
|
||||||
|
let sample = (t: t) => Jstat.triangular##sample(t.low, t.high, t.medium);
|
||||||
|
let toString = ({low, medium, high}: t) => {j|Triangular($low, $medium, $high)|j};
|
||||||
|
};
|
||||||
|
|
||||||
module Normal = {
|
module Normal = {
|
||||||
type t = normal;
|
type t = normal;
|
||||||
let pdf = (x, t: t) => Jstat.normal##pdf(x, t.mean, t.stdev);
|
let pdf = (x, t: t) => Jstat.normal##pdf(x, t.mean, t.stdev);
|
||||||
|
@ -87,6 +127,9 @@ module GenericSimple = {
|
||||||
let pdf = (x, dist) =>
|
let pdf = (x, dist) =>
|
||||||
switch (dist) {
|
switch (dist) {
|
||||||
| `Normal(n) => Normal.pdf(x, n)
|
| `Normal(n) => Normal.pdf(x, n)
|
||||||
|
| `Triangular(n) => Triangular.pdf(x, n)
|
||||||
|
| `Exponential(n) => Exponential.pdf(x, n)
|
||||||
|
| `Cauchy(n) => Cauchy.pdf(x, n)
|
||||||
| `Lognormal(n) => Lognormal.pdf(x, n)
|
| `Lognormal(n) => Lognormal.pdf(x, n)
|
||||||
| `Uniform(n) => Uniform.pdf(x, n)
|
| `Uniform(n) => Uniform.pdf(x, n)
|
||||||
| `Beta(n) => Beta.pdf(x, n)
|
| `Beta(n) => Beta.pdf(x, n)
|
||||||
|
@ -95,42 +138,53 @@ module GenericSimple = {
|
||||||
let inv = (x, dist) =>
|
let inv = (x, dist) =>
|
||||||
switch (dist) {
|
switch (dist) {
|
||||||
| `Normal(n) => Normal.inv(x, n)
|
| `Normal(n) => Normal.inv(x, n)
|
||||||
|
| `Triangular(n) => Triangular.inv(x, n)
|
||||||
|
| `Exponential(n) => Exponential.inv(x, n)
|
||||||
|
| `Cauchy(n) => Cauchy.inv(x, n)
|
||||||
| `Lognormal(n) => Lognormal.inv(x, n)
|
| `Lognormal(n) => Lognormal.inv(x, n)
|
||||||
| `Uniform(n) => Uniform.inv(x, n)
|
| `Uniform(n) => Uniform.inv(x, n)
|
||||||
| `Beta(n) => Beta.inv(x, n)
|
| `Beta(n) => Beta.inv(x, n)
|
||||||
};
|
};
|
||||||
|
|
||||||
let sample = dist =>
|
let sample: dist => float =
|
||||||
switch (dist) {
|
fun
|
||||||
| `Normal(n) => Normal.sample(n)
|
| `Normal(n) => Normal.sample(n)
|
||||||
|
| `Triangular(n) => Triangular.sample(n)
|
||||||
|
| `Exponential(n) => Exponential.sample(n)
|
||||||
|
| `Cauchy(n) => Cauchy.sample(n)
|
||||||
| `Lognormal(n) => Lognormal.sample(n)
|
| `Lognormal(n) => Lognormal.sample(n)
|
||||||
| `Uniform(n) => Uniform.sample(n)
|
| `Uniform(n) => Uniform.sample(n)
|
||||||
| `Beta(n) => Beta.sample(n)
|
| `Beta(n) => Beta.sample(n);
|
||||||
};
|
|
||||||
|
|
||||||
let toString = dist =>
|
let toString: dist => string =
|
||||||
switch (dist) {
|
fun
|
||||||
|
| `Triangular(n) => Triangular.toString(n)
|
||||||
|
| `Exponential(n) => Exponential.toString(n)
|
||||||
|
| `Cauchy(n) => Cauchy.toString(n)
|
||||||
| `Normal(n) => Normal.toString(n)
|
| `Normal(n) => Normal.toString(n)
|
||||||
| `Lognormal(n) => Lognormal.toString(n)
|
| `Lognormal(n) => Lognormal.toString(n)
|
||||||
| `Uniform(n) => Uniform.toString(n)
|
| `Uniform(n) => Uniform.toString(n)
|
||||||
| `Beta(n) => Beta.toString(n)
|
| `Beta(n) => Beta.toString(n);
|
||||||
};
|
|
||||||
|
|
||||||
let min = dist =>
|
let min: dist => float =
|
||||||
switch (dist) {
|
fun
|
||||||
|
| `Triangular({low}) => low
|
||||||
|
| `Exponential(n) => Exponential.inv(minCdfValue, n)
|
||||||
|
| `Cauchy(n) => Cauchy.inv(minCdfValue, n)
|
||||||
| `Normal(n) => Normal.inv(minCdfValue, n)
|
| `Normal(n) => Normal.inv(minCdfValue, n)
|
||||||
| `Lognormal(n) => Lognormal.inv(minCdfValue, n)
|
| `Lognormal(n) => Lognormal.inv(minCdfValue, n)
|
||||||
| `Uniform({low}) => low
|
| `Uniform({low}) => low
|
||||||
| `Beta(n) => Beta.inv(minCdfValue, n)
|
| `Beta(n) => Beta.inv(minCdfValue, n);
|
||||||
};
|
|
||||||
|
|
||||||
let max = dist =>
|
let max: dist => float =
|
||||||
switch (dist) {
|
fun
|
||||||
|
| `Triangular(n) => n.high
|
||||||
|
| `Exponential(n) => Exponential.inv(maxCdfValue, n)
|
||||||
|
| `Cauchy(n) => Cauchy.inv(maxCdfValue, n)
|
||||||
| `Normal(n) => Normal.inv(maxCdfValue, n)
|
| `Normal(n) => Normal.inv(maxCdfValue, n)
|
||||||
| `Lognormal(n) => Lognormal.inv(maxCdfValue, n)
|
| `Lognormal(n) => Lognormal.inv(maxCdfValue, n)
|
||||||
| `Beta(n) => Beta.inv(maxCdfValue, n)
|
| `Beta(n) => Beta.inv(maxCdfValue, n)
|
||||||
| `Uniform({high}) => high
|
| `Uniform({high}) => high;
|
||||||
};
|
|
||||||
|
|
||||||
let interpolateXs =
|
let interpolateXs =
|
||||||
(~xSelection: [ | `Linear | `ByWeight]=`Linear, dist: dist, sampleCount) => {
|
(~xSelection: [ | `Linear | `ByWeight]=`Linear, dist: dist, sampleCount) => {
|
||||||
|
|
Loading…
Reference in New Issue
Block a user