Merge pull request #409 from quantified-uncertainty/splidcontinuousDiscrete-refactor
Refactor of splitContinuousAndDiscrete to allow for customization
This commit is contained in:
commit
e1551cb1d7
|
@ -1,41 +0,0 @@
|
|||
open Jest
|
||||
open TestHelpers
|
||||
|
||||
describe("Continuous and discrete splits", () => {
|
||||
makeTest(
|
||||
"splits (1)",
|
||||
SampleSetDist_ToPointSet.Internals.T.splitContinuousAndDiscrete([1.432, 1.33455, 2.0]),
|
||||
([1.432, 1.33455, 2.0], E.FloatFloatMap.empty()),
|
||||
)
|
||||
makeTest(
|
||||
"splits (2)",
|
||||
SampleSetDist_ToPointSet.Internals.T.splitContinuousAndDiscrete([
|
||||
1.432,
|
||||
1.33455,
|
||||
2.0,
|
||||
2.0,
|
||||
2.0,
|
||||
2.0,
|
||||
]) |> (((c, disc)) => (c, disc |> E.FloatFloatMap.toArray)),
|
||||
([1.432, 1.33455], [(2.0, 4.0)]),
|
||||
)
|
||||
|
||||
let makeDuplicatedArray = count => {
|
||||
let arr = Belt.Array.range(1, count) |> E.A.fmap(float_of_int)
|
||||
let sorted = arr |> Belt.SortArray.stableSortBy(_, compare)
|
||||
E.A.concatMany([sorted, sorted, sorted, sorted]) |> Belt.SortArray.stableSortBy(_, compare)
|
||||
}
|
||||
|
||||
let (_, discrete1) = SampleSetDist_ToPointSet.Internals.T.splitContinuousAndDiscrete(
|
||||
makeDuplicatedArray(10),
|
||||
)
|
||||
let toArr1 = discrete1 |> E.FloatFloatMap.toArray
|
||||
makeTest("splitMedium at count=10", toArr1 |> Belt.Array.length, 10)
|
||||
|
||||
let (_c, discrete2) = SampleSetDist_ToPointSet.Internals.T.splitContinuousAndDiscrete(
|
||||
makeDuplicatedArray(500),
|
||||
)
|
||||
let toArr2 = discrete2 |> E.FloatFloatMap.toArray
|
||||
makeTest("splitMedium at count=500", toArr2 |> Belt.Array.length, 500)
|
||||
// makeTest("foo", [] |> Belt.Array.length, 500)
|
||||
})
|
|
@ -0,0 +1,48 @@
|
|||
open Jest
|
||||
open TestHelpers
|
||||
|
||||
let prepareInputs = (ar, minWeight) =>
|
||||
E.A.Sorted.Floats.splitContinuousAndDiscreteForMinWeight(ar, ~minDiscreteWeight=minWeight) |> (
|
||||
((c, disc)) => (c, disc |> E.FloatFloatMap.toArray)
|
||||
)
|
||||
|
||||
describe("Continuous and discrete splits", () => {
|
||||
makeTest(
|
||||
"is empty, with no common elements",
|
||||
prepareInputs([1.432, 1.33455, 2.0], 2),
|
||||
([1.33455, 1.432, 2.0], []),
|
||||
)
|
||||
|
||||
makeTest(
|
||||
"only stores 3.5 as discrete when minWeight is 3",
|
||||
prepareInputs([1.432, 1.33455, 2.0, 2.0, 3.5, 3.5, 3.5], 3),
|
||||
([1.33455, 1.432, 2.0, 2.0], [(3.5, 3.0)]),
|
||||
)
|
||||
|
||||
makeTest(
|
||||
"doesn't store 3.5 as discrete when minWeight is 5",
|
||||
prepareInputs([1.432, 1.33455, 2.0, 2.0, 3.5, 3.5, 3.5], 5),
|
||||
([1.33455, 1.432, 2.0, 2.0, 3.5, 3.5, 3.5], []),
|
||||
)
|
||||
|
||||
let makeDuplicatedArray = count => {
|
||||
let arr = Belt.Array.range(1, count) |> E.A.fmap(float_of_int)
|
||||
let sorted = arr |> Belt.SortArray.stableSortBy(_, compare)
|
||||
E.A.concatMany([sorted, sorted, sorted, sorted]) |> Belt.SortArray.stableSortBy(_, compare)
|
||||
}
|
||||
|
||||
let (_, discrete1) = E.A.Sorted.Floats.splitContinuousAndDiscreteForMinWeight(
|
||||
makeDuplicatedArray(10),
|
||||
~minDiscreteWeight=2,
|
||||
)
|
||||
let toArr1 = discrete1 |> E.FloatFloatMap.toArray
|
||||
makeTest("splitMedium at count=10", toArr1 |> Belt.Array.length, 10)
|
||||
|
||||
let (_c, discrete2) = E.A.Sorted.Floats.splitContinuousAndDiscreteForMinWeight(
|
||||
makeDuplicatedArray(500),
|
||||
~minDiscreteWeight=2,
|
||||
)
|
||||
let toArr2 = discrete2 |> E.FloatFloatMap.toArray
|
||||
makeTest("splitMedium at count=500", toArr2 |> Belt.Array.length, 500)
|
||||
// makeTest("foo", [] |> Belt.Array.length, 500)
|
||||
})
|
|
@ -39,28 +39,6 @@ module Internals = {
|
|||
module T = {
|
||||
type t = array<float>
|
||||
|
||||
let splitContinuousAndDiscrete = (sortedArray: t) => {
|
||||
let continuous = []
|
||||
let discrete = E.FloatFloatMap.empty()
|
||||
Belt.Array.forEachWithIndex(sortedArray, (index, element) => {
|
||||
let maxIndex = (sortedArray |> Array.length) - 1
|
||||
let possiblySimilarElements = switch index {
|
||||
| 0 => [index + 1]
|
||||
| n if n == maxIndex => [index - 1]
|
||||
| _ => [index - 1, index + 1]
|
||||
} |> Belt.Array.map(_, r => sortedArray[r])
|
||||
let hasSimilarElement = Belt.Array.some(possiblySimilarElements, r => r == element)
|
||||
hasSimilarElement
|
||||
? E.FloatFloatMap.increment(element, discrete)
|
||||
: {
|
||||
let _ = Js.Array.push(element, continuous)
|
||||
}
|
||||
|
||||
()
|
||||
})
|
||||
(continuous, discrete)
|
||||
}
|
||||
|
||||
let xWidthToUnitWidth = (samples, outputXYPoints, xWidth) => {
|
||||
let xyPointRange = E.A.Sorted.range(samples) |> E.O.default(0.0)
|
||||
let xyPointWidth = xyPointRange /. float_of_int(outputXYPoints)
|
||||
|
@ -85,7 +63,11 @@ let toPointSetDist = (
|
|||
(),
|
||||
): Internals.Types.outputs => {
|
||||
Array.fast_sort(compare, samples)
|
||||
let (continuousPart, discretePart) = E.A.Sorted.Floats.split(samples)
|
||||
let minDiscreteToKeep = MagicNumbers.ToPointSet.minDiscreteToKeep(samples)
|
||||
let (continuousPart, discretePart) = E.A.Sorted.Floats.splitContinuousAndDiscreteForMinWeight(
|
||||
samples,
|
||||
~minDiscreteWeight=minDiscreteToKeep,
|
||||
)
|
||||
let length = samples |> E.A.length |> float_of_int
|
||||
let discrete: PointSetTypes.discreteShape =
|
||||
discretePart
|
||||
|
|
|
@ -22,3 +22,16 @@ module OpCost = {
|
|||
let wildcardCost = 1000
|
||||
let monteCarloCost = Environment.defaultSampleCount
|
||||
}
|
||||
|
||||
module ToPointSet = {
|
||||
/*
|
||||
This function chooses the minimum amount of duplicate samples that need
|
||||
to exist in order for this to be considered discrete. The tricky thing
|
||||
is that there are some operations that create duplicate continuous samples,
|
||||
so we can't guarantee that these only will occur because the fundamental
|
||||
structure is meant to be discrete. I chose this heuristic because I think
|
||||
it would strike a reasonable trade-off, but I’m really unsure what’s
|
||||
best right now.
|
||||
*/
|
||||
let minDiscreteToKeep = samples => max(20, E.A.length(samples) / 50)
|
||||
}
|
||||
|
|
|
@ -8,7 +8,7 @@ module FloatFloatMap = {
|
|||
type t = Belt.MutableMap.t<Id.t, float, Id.identity>
|
||||
|
||||
let fromArray = (ar: array<(float, float)>) => Belt.MutableMap.fromArray(ar, ~id=module(Id))
|
||||
let toArray = (t: t) => Belt.MutableMap.toArray(t)
|
||||
let toArray = (t: t): array<(float, float)> => Belt.MutableMap.toArray(t)
|
||||
let empty = () => Belt.MutableMap.make(~id=module(Id))
|
||||
let increment = (el, t: t) =>
|
||||
Belt.MutableMap.update(t, el, x =>
|
||||
|
@ -20,6 +20,10 @@ module FloatFloatMap = {
|
|||
|
||||
let get = (el, t: t) => Belt.MutableMap.get(t, el)
|
||||
let fmap = (fn, t: t) => Belt.MutableMap.map(t, fn)
|
||||
let partition = (fn, t: t) => {
|
||||
let (match, noMatch) = Belt.Array.partition(toArray(t), fn)
|
||||
(fromArray(match), fromArray(noMatch))
|
||||
}
|
||||
}
|
||||
|
||||
module Int = {
|
||||
|
@ -518,18 +522,22 @@ module A = {
|
|||
let makeIncrementalDown = (a, b) =>
|
||||
Array.make(a - b + 1, a) |> Array.mapi((i, c) => c - i) |> Belt.Array.map(_, float_of_int)
|
||||
|
||||
let split = (sortedArray: array<float>) => {
|
||||
let continuous = []
|
||||
/*
|
||||
This function goes through a sorted array and divides it into two different clusters:
|
||||
continuous samples and discrete samples. The discrete samples are stored in a mutable map.
|
||||
Samples are thought to be discrete if they have any duplicates.
|
||||
*/
|
||||
let _splitContinuousAndDiscreteForDuplicates = (sortedArray: array<float>) => {
|
||||
let continuous: array<float> = []
|
||||
let discrete = FloatFloatMap.empty()
|
||||
Belt.Array.forEachWithIndex(sortedArray, (_, element) => {
|
||||
// let maxIndex = (sortedArray |> Array.length) - 1
|
||||
// let possiblySimilarElements = switch index {
|
||||
// | 0 => [index + 1]
|
||||
// | n if n == maxIndex => [index - 1]
|
||||
// | _ => [index - 1, index + 1]
|
||||
// } |> Belt.Array.map(_, r => sortedArray[r])
|
||||
// let hasSimilarElement = Belt.Array.some(possiblySimilarElements, r => r == element)
|
||||
let hasSimilarElement = false
|
||||
Belt.Array.forEachWithIndex(sortedArray, (index, element) => {
|
||||
let maxIndex = (sortedArray |> Array.length) - 1
|
||||
let possiblySimilarElements = switch index {
|
||||
| 0 => [index + 1]
|
||||
| n if n == maxIndex => [index - 1]
|
||||
| _ => [index - 1, index + 1]
|
||||
} |> Belt.Array.map(_, r => sortedArray[r])
|
||||
let hasSimilarElement = Belt.Array.some(possiblySimilarElements, r => r == element)
|
||||
hasSimilarElement
|
||||
? FloatFloatMap.increment(element, discrete)
|
||||
: {
|
||||
|
@ -541,6 +549,32 @@ module A = {
|
|||
|
||||
(continuous, discrete)
|
||||
}
|
||||
|
||||
/*
|
||||
This function works very similarly to splitContinuousAndDiscreteForDuplicates. The one major difference
|
||||
is that you can specify a minDiscreteWeight. If the min discreet weight is 4, that would mean that
|
||||
at least four elements needed from a specific value for that to be kept as discrete. This is important
|
||||
because in some cases, we can expect that some common elements will be generated by regular operations.
|
||||
The final continous array will be sorted.
|
||||
*/
|
||||
let splitContinuousAndDiscreteForMinWeight = (
|
||||
sortedArray: array<float>,
|
||||
~minDiscreteWeight: int,
|
||||
) => {
|
||||
let (continuous, discrete) = _splitContinuousAndDiscreteForDuplicates(sortedArray)
|
||||
let keepFn = v => Belt.Float.toInt(v) >= minDiscreteWeight
|
||||
let (discreteToKeep, discreteToIntegrate) = FloatFloatMap.partition(
|
||||
((_, v)) => keepFn(v),
|
||||
discrete,
|
||||
)
|
||||
let newContinousSamples =
|
||||
discreteToIntegrate->FloatFloatMap.toArray
|
||||
|> fmap(((k, v)) => Belt.Array.makeBy(Belt.Float.toInt(v), _ => k))
|
||||
|> Belt.Array.concatMany
|
||||
let newContinuous = concat(continuous, newContinousSamples)
|
||||
newContinuous |> Array.fast_sort(floatCompare)
|
||||
(newContinuous, discreteToKeep)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user