Add logistic distribution
This commit is contained in:
parent
b4f67f49c4
commit
e0f505c8ea
|
@ -33,6 +33,7 @@ describe("eval on distribution functions", () => {
|
||||||
testEval("mean(gamma(5,5))", "Ok(25)")
|
testEval("mean(gamma(5,5))", "Ok(25)")
|
||||||
testEval("mean(bernoulli(0.2))", "Ok(0.2)")
|
testEval("mean(bernoulli(0.2))", "Ok(0.2)")
|
||||||
testEval("mean(bernoulli(0.8))", "Ok(0.8)")
|
testEval("mean(bernoulli(0.8))", "Ok(0.8)")
|
||||||
|
testEval("mean(logistic(5,1))", "Ok(5)")
|
||||||
})
|
})
|
||||||
describe("toString", () => {
|
describe("toString", () => {
|
||||||
testEval("toString(normal(5,2))", "Ok('Normal(5,2)')")
|
testEval("toString(normal(5,2))", "Ok('Normal(5,2)')")
|
||||||
|
|
|
@ -216,6 +216,24 @@ module Uniform = {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
module Logistic = {
|
||||||
|
type t = logistic
|
||||||
|
let make = (location, scale) =>
|
||||||
|
scale > 0.0
|
||||||
|
? Ok(#Logistic({location: location, scale: scale}))
|
||||||
|
: Error("Scale must be positive")
|
||||||
|
|
||||||
|
let pdf = (x, t: t) => Stdlib.Logistic.pdf(x, t.location, t.scale)
|
||||||
|
let cdf = (x, t: t) => Stdlib.Logistic.cdf(x, t.location, t.scale)
|
||||||
|
let inv = (p, t: t) => Stdlib.Logistic.quantile(p, t.location, t.scale)
|
||||||
|
let sample = (t: t) => {
|
||||||
|
let s = Uniform.sample({low: 0.0, high: 1.0})
|
||||||
|
inv(s, t)
|
||||||
|
}
|
||||||
|
let mean = (t: t) => Ok(Stdlib.Logistic.mean(t.location, t.scale))
|
||||||
|
let toString = ({location, scale}: t) => j`Logistic($location,$scale)`
|
||||||
|
}
|
||||||
|
|
||||||
module Bernoulli = {
|
module Bernoulli = {
|
||||||
type t = bernoulli
|
type t = bernoulli
|
||||||
let make = p =>
|
let make = p =>
|
||||||
|
@ -304,6 +322,7 @@ module T = {
|
||||||
| #Cauchy(n) => Cauchy.pdf(x, n)
|
| #Cauchy(n) => Cauchy.pdf(x, n)
|
||||||
| #Gamma(n) => Gamma.pdf(x, n)
|
| #Gamma(n) => Gamma.pdf(x, n)
|
||||||
| #Lognormal(n) => Lognormal.pdf(x, n)
|
| #Lognormal(n) => Lognormal.pdf(x, n)
|
||||||
|
| #Logistic(n) => Logistic.pdf(x, n)
|
||||||
| #Uniform(n) => Uniform.pdf(x, n)
|
| #Uniform(n) => Uniform.pdf(x, n)
|
||||||
| #Beta(n) => Beta.pdf(x, n)
|
| #Beta(n) => Beta.pdf(x, n)
|
||||||
| #Float(n) => Float.pdf(x, n)
|
| #Float(n) => Float.pdf(x, n)
|
||||||
|
@ -317,6 +336,7 @@ module T = {
|
||||||
| #Exponential(n) => Exponential.cdf(x, n)
|
| #Exponential(n) => Exponential.cdf(x, n)
|
||||||
| #Cauchy(n) => Cauchy.cdf(x, n)
|
| #Cauchy(n) => Cauchy.cdf(x, n)
|
||||||
| #Gamma(n) => Gamma.cdf(x, n)
|
| #Gamma(n) => Gamma.cdf(x, n)
|
||||||
|
| #Logistic(n) => Logistic.cdf(x, n)
|
||||||
| #Lognormal(n) => Lognormal.cdf(x, n)
|
| #Lognormal(n) => Lognormal.cdf(x, n)
|
||||||
| #Uniform(n) => Uniform.cdf(x, n)
|
| #Uniform(n) => Uniform.cdf(x, n)
|
||||||
| #Beta(n) => Beta.cdf(x, n)
|
| #Beta(n) => Beta.cdf(x, n)
|
||||||
|
@ -331,6 +351,7 @@ module T = {
|
||||||
| #Exponential(n) => Exponential.inv(x, n)
|
| #Exponential(n) => Exponential.inv(x, n)
|
||||||
| #Cauchy(n) => Cauchy.inv(x, n)
|
| #Cauchy(n) => Cauchy.inv(x, n)
|
||||||
| #Gamma(n) => Gamma.inv(x, n)
|
| #Gamma(n) => Gamma.inv(x, n)
|
||||||
|
| #Logistic(n) => Logistic.inv(x, n)
|
||||||
| #Lognormal(n) => Lognormal.inv(x, n)
|
| #Lognormal(n) => Lognormal.inv(x, n)
|
||||||
| #Uniform(n) => Uniform.inv(x, n)
|
| #Uniform(n) => Uniform.inv(x, n)
|
||||||
| #Beta(n) => Beta.inv(x, n)
|
| #Beta(n) => Beta.inv(x, n)
|
||||||
|
@ -345,6 +366,7 @@ module T = {
|
||||||
| #Exponential(n) => Exponential.sample(n)
|
| #Exponential(n) => Exponential.sample(n)
|
||||||
| #Cauchy(n) => Cauchy.sample(n)
|
| #Cauchy(n) => Cauchy.sample(n)
|
||||||
| #Gamma(n) => Gamma.sample(n)
|
| #Gamma(n) => Gamma.sample(n)
|
||||||
|
| #Logistic(n) => Logistic.sample(n)
|
||||||
| #Lognormal(n) => Lognormal.sample(n)
|
| #Lognormal(n) => Lognormal.sample(n)
|
||||||
| #Uniform(n) => Uniform.sample(n)
|
| #Uniform(n) => Uniform.sample(n)
|
||||||
| #Beta(n) => Beta.sample(n)
|
| #Beta(n) => Beta.sample(n)
|
||||||
|
@ -369,6 +391,7 @@ module T = {
|
||||||
| #Cauchy(n) => Cauchy.toString(n)
|
| #Cauchy(n) => Cauchy.toString(n)
|
||||||
| #Normal(n) => Normal.toString(n)
|
| #Normal(n) => Normal.toString(n)
|
||||||
| #Gamma(n) => Gamma.toString(n)
|
| #Gamma(n) => Gamma.toString(n)
|
||||||
|
| #Logistic(n) => Logistic.toString(n)
|
||||||
| #Lognormal(n) => Lognormal.toString(n)
|
| #Lognormal(n) => Lognormal.toString(n)
|
||||||
| #Uniform(n) => Uniform.toString(n)
|
| #Uniform(n) => Uniform.toString(n)
|
||||||
| #Beta(n) => Beta.toString(n)
|
| #Beta(n) => Beta.toString(n)
|
||||||
|
@ -383,6 +406,7 @@ module T = {
|
||||||
| #Cauchy(n) => Cauchy.inv(minCdfValue, n)
|
| #Cauchy(n) => Cauchy.inv(minCdfValue, n)
|
||||||
| #Normal(n) => Normal.inv(minCdfValue, n)
|
| #Normal(n) => Normal.inv(minCdfValue, n)
|
||||||
| #Lognormal(n) => Lognormal.inv(minCdfValue, n)
|
| #Lognormal(n) => Lognormal.inv(minCdfValue, n)
|
||||||
|
| #Logistic(n) => Logistic.inv(minCdfValue, n)
|
||||||
| #Gamma(n) => Gamma.inv(minCdfValue, n)
|
| #Gamma(n) => Gamma.inv(minCdfValue, n)
|
||||||
| #Uniform({low}) => low
|
| #Uniform({low}) => low
|
||||||
| #Bernoulli(n) => Bernoulli.min(n)
|
| #Bernoulli(n) => Bernoulli.min(n)
|
||||||
|
@ -398,6 +422,7 @@ module T = {
|
||||||
| #Normal(n) => Normal.inv(maxCdfValue, n)
|
| #Normal(n) => Normal.inv(maxCdfValue, n)
|
||||||
| #Gamma(n) => Gamma.inv(maxCdfValue, n)
|
| #Gamma(n) => Gamma.inv(maxCdfValue, n)
|
||||||
| #Lognormal(n) => Lognormal.inv(maxCdfValue, n)
|
| #Lognormal(n) => Lognormal.inv(maxCdfValue, n)
|
||||||
|
| #Logistic(n) => Logistic.inv(maxCdfValue, n)
|
||||||
| #Beta(n) => Beta.inv(maxCdfValue, n)
|
| #Beta(n) => Beta.inv(maxCdfValue, n)
|
||||||
| #Bernoulli(n) => Bernoulli.max(n)
|
| #Bernoulli(n) => Bernoulli.max(n)
|
||||||
| #Uniform({high}) => high
|
| #Uniform({high}) => high
|
||||||
|
@ -412,6 +437,7 @@ module T = {
|
||||||
| #Normal(n) => Normal.mean(n)
|
| #Normal(n) => Normal.mean(n)
|
||||||
| #Lognormal(n) => Lognormal.mean(n)
|
| #Lognormal(n) => Lognormal.mean(n)
|
||||||
| #Beta(n) => Beta.mean(n)
|
| #Beta(n) => Beta.mean(n)
|
||||||
|
| #Logistic(n) => Logistic.mean(n)
|
||||||
| #Uniform(n) => Uniform.mean(n)
|
| #Uniform(n) => Uniform.mean(n)
|
||||||
| #Gamma(n) => Gamma.mean(n)
|
| #Gamma(n) => Gamma.mean(n)
|
||||||
| #Bernoulli(n) => Bernoulli.mean(n)
|
| #Bernoulli(n) => Bernoulli.mean(n)
|
||||||
|
|
|
@ -36,6 +36,11 @@ type gamma = {
|
||||||
scale: float,
|
scale: float,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
type logistic = {
|
||||||
|
location: float,
|
||||||
|
scale: float,
|
||||||
|
}
|
||||||
|
|
||||||
type bernoulli = {p: float}
|
type bernoulli = {p: float}
|
||||||
|
|
||||||
@genType
|
@genType
|
||||||
|
@ -50,6 +55,7 @@ type symbolicDist = [
|
||||||
| #Gamma(gamma)
|
| #Gamma(gamma)
|
||||||
| #Float(float)
|
| #Float(float)
|
||||||
| #Bernoulli(bernoulli)
|
| #Bernoulli(bernoulli)
|
||||||
|
| #Logistic(logistic)
|
||||||
]
|
]
|
||||||
|
|
||||||
type analyticalSimplificationResult = [
|
type analyticalSimplificationResult = [
|
||||||
|
|
|
@ -178,6 +178,7 @@ module SymbolicConstructors = {
|
||||||
| "uniform" => Ok(SymbolicDist.Uniform.make)
|
| "uniform" => Ok(SymbolicDist.Uniform.make)
|
||||||
| "beta" => Ok(SymbolicDist.Beta.make)
|
| "beta" => Ok(SymbolicDist.Beta.make)
|
||||||
| "lognormal" => Ok(SymbolicDist.Lognormal.make)
|
| "lognormal" => Ok(SymbolicDist.Lognormal.make)
|
||||||
|
| "logistic" => Ok(SymbolicDist.Logistic.make)
|
||||||
| "cauchy" => Ok(SymbolicDist.Cauchy.make)
|
| "cauchy" => Ok(SymbolicDist.Cauchy.make)
|
||||||
| "gamma" => Ok(SymbolicDist.Gamma.make)
|
| "gamma" => Ok(SymbolicDist.Gamma.make)
|
||||||
| "to" => Ok(SymbolicDist.From90thPercentile.make)
|
| "to" => Ok(SymbolicDist.From90thPercentile.make)
|
||||||
|
@ -212,7 +213,14 @@ let dispatchToGenericOutput = (
|
||||||
| ("delta", [EvNumber(f)]) =>
|
| ("delta", [EvNumber(f)]) =>
|
||||||
SymbolicDist.Float.makeSafe(f)->SymbolicConstructors.symbolicResultToOutput
|
SymbolicDist.Float.makeSafe(f)->SymbolicConstructors.symbolicResultToOutput
|
||||||
| (
|
| (
|
||||||
("normal" | "uniform" | "beta" | "lognormal" | "cauchy" | "gamma" | "to") as fnName,
|
("normal"
|
||||||
|
| "uniform"
|
||||||
|
| "beta"
|
||||||
|
| "lognormal"
|
||||||
|
| "cauchy"
|
||||||
|
| "gamma"
|
||||||
|
| "to"
|
||||||
|
| "logistic") as fnName,
|
||||||
[EvNumber(f1), EvNumber(f2)],
|
[EvNumber(f1), EvNumber(f2)],
|
||||||
) =>
|
) =>
|
||||||
SymbolicConstructors.twoFloat(fnName)
|
SymbolicConstructors.twoFloat(fnName)
|
||||||
|
|
|
@ -10,4 +10,31 @@ module Bernoulli = {
|
||||||
|
|
||||||
@module external mean: float => float = "@stdlib/stats/base/dists/bernoulli/mean"
|
@module external mean: float => float = "@stdlib/stats/base/dists/bernoulli/mean"
|
||||||
let mean = mean
|
let mean = mean
|
||||||
|
|
||||||
|
@module external stdev: float => float = "@stdlib/stats/base/dists/bernoulli/stdev"
|
||||||
|
let stdev = stdev
|
||||||
|
|
||||||
|
@module external variance: float => float = "@stdlib/stats/base/dists/bernoulli/variance"
|
||||||
|
let variance = variance
|
||||||
|
}
|
||||||
|
|
||||||
|
module Logistic = {
|
||||||
|
@module external cdf: (float, float, float) => float = "@stdlib/stats/base/dists/logistic/cdf"
|
||||||
|
let cdf = cdf
|
||||||
|
|
||||||
|
@module external pdf: (float, float, float) => float = "@stdlib/stats/base/dists/logistic/pdf"
|
||||||
|
let pdf = pdf
|
||||||
|
|
||||||
|
@module
|
||||||
|
external quantile: (float, float, float) => float = "@stdlib/stats/base/dists/logistic/quantile"
|
||||||
|
let quantile = quantile
|
||||||
|
|
||||||
|
@module external mean: (float, float) => float = "@stdlib/stats/base/dists/logistic/mean"
|
||||||
|
let mean = mean
|
||||||
|
|
||||||
|
@module external stdev: (float, float) => float = "@stdlib/stats/base/dists/logistic/stdev"
|
||||||
|
let stdev = stdev
|
||||||
|
|
||||||
|
@module external variance: (float, float) => float = "@stdlib/stats/base/dists/logistic/variance"
|
||||||
|
let variance = variance
|
||||||
}
|
}
|
||||||
|
|
Loading…
Reference in New Issue
Block a user