Merge pull request #359 from quantified-uncertainty/log-inputs-errors

Show correct errors early on when log(distribution) has bad arguments
This commit is contained in:
Ozzie Gooen 2022-04-25 20:50:26 -04:00 committed by GitHub
commit dc127a884a
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
5 changed files with 63 additions and 9 deletions

View File

@ -23,7 +23,7 @@ describe("eval on distribution functions", () => {
testEval("-normal(5,2)", "Ok(Normal(-5,2))")
})
describe("to", () => {
testEval("5 to 2", "Error(Math Error: Low value must be less than high value.)")
testEval("5 to 2", "Error(Distribution Math Error: Low value must be less than high value.)")
testEval("to(2,5)", "Ok(Lognormal(1.1512925464970227,0.27853260523016377))")
testEval("to(-2,2)", "Ok(Normal(0,1.2159136638235384))")
})
@ -90,10 +90,13 @@ describe("eval on distribution functions", () => {
describe("log", () => {
testEval("log(2, uniform(5,8))", "Ok(Sample Set Distribution)")
testEval("log(normal(5,2), 3)", "Error(Math Error: Operation returned complex result)")
testEval(
"log(normal(5,2), 3)",
"Error(Distribution Math Error: Logarithm of input error: First input must completely greater than 0)",
)
testEval(
"log(normal(5,2), normal(10,1))",
"Error(Math Error: Operation returned complex result)",
"Error(Distribution Math Error: Logarithm of input error: First input must completely greater than 0)",
)
testEval("log(uniform(5,8))", "Ok(Sample Set Distribution)")
testEval("log10(uniform(5,8))", "Ok(Sample Set Distribution)")

View File

@ -12,7 +12,7 @@ describe("Symbolic mean", () => {
expect(squiggleResult.value).toBeCloseTo((x + y + z) / 3);
} catch (err) {
expect((err as Error).message).toEqual(
"Expected squiggle expression to evaluate but got error: Math Error: Triangular values must be increasing order."
"Expected squiggle expression to evaluate but got error: Distribution Math Error: Triangular values must be increasing order."
);
}
}

View File

@ -14,6 +14,7 @@ type error =
| OperationError(Operation.Error.t)
| PointSetConversionError(SampleSetDist.pointsetConversionError)
| SparklineError(PointSetTypes.sparklineError) // This type of error is for when we find a sparkline of a discrete distribution. This should probably at some point be actually implemented
| LogarithmOfDistributionError(string)
| OtherError(string)
@genType
@ -29,6 +30,7 @@ module Error = {
| Unreachable => "Unreachable"
| DistributionVerticalShiftIsInvalid => "Distribution Vertical Shift is Invalid"
| ArgumentError(s) => `Argument Error ${s}`
| LogarithmOfDistributionError(s) => `Logarithm of input error: ${s}`
| TooFewSamples => "Too Few Samples"
| OperationError(err) => Operation.Error.toString(err)
| PointSetConversionError(err) => SampleSetDist.pointsetConversionErrorToString(err)

View File

@ -186,6 +186,49 @@ module AlgebraicCombination = {
->E.R2.fmap(r => DistributionTypes.SampleSet(r))
}
/*
It would be good to also do a check to make sure that probability mass for the second
operand, at value 1.0, is 0 (or approximately 0). However, we'd ideally want to check
that both the probability mass and the probability density are greater than zero.
Right now we don't yet have a way of getting probability mass, so I'll leave this for later.
*/
let getLogarithmInputError = (t1: t, t2: t, ~toPointSetFn: toPointSetFn): option<error> => {
let firstOperandIsGreaterThanZero =
toFloatOperation(t1, ~toPointSetFn, ~distToFloatOperation=#Cdf(1e-10)) |> E.R.fmap(r =>
r > 0.
)
let secondOperandIsGreaterThanZero =
toFloatOperation(t2, ~toPointSetFn, ~distToFloatOperation=#Cdf(1e-10)) |> E.R.fmap(r =>
r > 0.
)
let items = E.A.R.firstErrorOrOpen([
firstOperandIsGreaterThanZero,
secondOperandIsGreaterThanZero,
])
switch items {
| Error(r) => Some(r)
| Ok([true, _]) =>
Some(LogarithmOfDistributionError("First input must completely greater than 0"))
| Ok([false, true]) =>
Some(LogarithmOfDistributionError("Second input must completely greater than 0"))
| Ok([false, false]) => None
| Ok(_) => Some(Unreachable)
}
}
let getInvalidOperationError = (
t1: t,
t2: t,
~toPointSetFn: toPointSetFn,
~arithmeticOperation,
): option<error> => {
if arithmeticOperation == #Logarithm {
getLogarithmInputError(t1, t2, ~toPointSetFn)
} else {
None
}
}
//I'm (Ozzie) really just guessing here, very little idea what's best
let expectedConvolutionCost: t => int = x =>
switch x {
@ -225,11 +268,17 @@ module AlgebraicCombination = {
switch tryAnalyticalSimplification(arithmeticOperation, t1, t2) {
| Some(Ok(symbolicDist)) => Ok(Symbolic(symbolicDist))
| Some(Error(e)) => Error(OperationError(e))
| None =>
switch getInvalidOperationError(t1, t2, ~toPointSetFn, ~arithmeticOperation) {
| Some(e) => Error(e)
| None =>
switch chooseConvolutionOrMonteCarlo(arithmeticOperation, t1, t2) {
| MonteCarlo => runMonteCarlo(toSampleSetFn, arithmeticOperation, t1, t2)
| Convolution(convOp) =>
runConvolution(toPointSetFn, convOp, t1, t2)->E.R2.fmap(r => DistributionTypes.PointSet(r))
runConvolution(toPointSetFn, convOp, t1, t2)->E.R2.fmap(r => DistributionTypes.PointSet(
r,
))
}
}
}
}

View File

@ -21,7 +21,7 @@ let errorToString = err =>
| REAssignmentExpected => "Assignment expected"
| REExpressionExpected => "Expression expected"
| REFunctionExpected(msg) => `Function expected: ${msg}`
| REDistributionError(err) => `Math Error: ${DistributionTypes.Error.toString(err)}`
| REDistributionError(err) => `Distribution Math Error: ${DistributionTypes.Error.toString(err)}`
| REJavaScriptExn(omsg, oname) => {
let answer = "JS Exception:"
let answer = switch oname {