Remove Leaf and Operation wrapper types
This commit is contained in:
parent
a649a6bca2
commit
ca9f725ae7
|
@ -383,9 +383,9 @@ describe("Shape", () => {
|
||||||
let numSamples = 10000;
|
let numSamples = 10000;
|
||||||
open Distributions.Shape;
|
open Distributions.Shape;
|
||||||
let normal: SymbolicTypes.symbolicDist = `Normal({mean, stdev});
|
let normal: SymbolicTypes.symbolicDist = `Normal({mean, stdev});
|
||||||
let normalShape = ExpressionTree.toShape(numSamples, `Leaf(`SymbolicDist(normal)));
|
let normalShape = ExpressionTree.toShape(numSamples, `SymbolicDist(normal));
|
||||||
let lognormal = SymbolicDist.Lognormal.fromMeanAndStdev(mean, stdev);
|
let lognormal = SymbolicDist.Lognormal.fromMeanAndStdev(mean, stdev);
|
||||||
let lognormalShape = ExpressionTree.toShape(numSamples, `Leaf(`SymbolicDist(lognormal)));
|
let lognormalShape = ExpressionTree.toShape(numSamples, `SymbolicDist(lognormal));
|
||||||
|
|
||||||
makeTestCloseEquality(
|
makeTestCloseEquality(
|
||||||
"Mean of a normal",
|
"Mean of a normal",
|
||||||
|
|
|
@ -389,7 +389,7 @@ module Draw = {
|
||||||
let numSamples = 3000;
|
let numSamples = 3000;
|
||||||
|
|
||||||
let normal: SymbolicTypes.symbolicDist = `Normal({mean, stdev});
|
let normal: SymbolicTypes.symbolicDist = `Normal({mean, stdev});
|
||||||
let normalShape = ExpressionTree.toShape(numSamples, `Leaf(`SymbolicDist(normal)));
|
let normalShape = ExpressionTree.toShape(numSamples, `SymbolicDist(normal));
|
||||||
let xyShape: Types.xyShape =
|
let xyShape: Types.xyShape =
|
||||||
switch (normalShape) {
|
switch (normalShape) {
|
||||||
| Mixed(_) => {xs: [||], ys: [||]}
|
| Mixed(_) => {xs: [||], ys: [||]}
|
||||||
|
|
|
@ -2,10 +2,11 @@ open ExpressionTypes.ExpressionTree;
|
||||||
|
|
||||||
let toShape = (sampleCount: int, node: node) => {
|
let toShape = (sampleCount: int, node: node) => {
|
||||||
let renderResult =
|
let renderResult =
|
||||||
ExpressionTreeEvaluator.toLeaf(`Operation(`Render(node)), sampleCount);
|
`Render(`Normalize(node))
|
||||||
|
|> ExpressionTreeEvaluator.toLeaf({sampleCount: sampleCount});
|
||||||
|
|
||||||
switch (renderResult) {
|
switch (renderResult) {
|
||||||
| Ok(`Leaf(`RenderedDist(rs))) =>
|
| Ok(`RenderedDist(rs)) =>
|
||||||
let continuous = Distributions.Shape.T.toContinuous(rs);
|
let continuous = Distributions.Shape.T.toContinuous(rs);
|
||||||
let discrete = Distributions.Shape.T.toDiscrete(rs);
|
let discrete = Distributions.Shape.T.toDiscrete(rs);
|
||||||
let shape = MixedShapeBuilder.buildSimple(~continuous, ~discrete);
|
let shape = MixedShapeBuilder.buildSimple(~continuous, ~discrete);
|
||||||
|
@ -17,6 +18,6 @@ let toShape = (sampleCount: int, node: node) => {
|
||||||
|
|
||||||
let rec toString =
|
let rec toString =
|
||||||
fun
|
fun
|
||||||
| `Leaf(`SymbolicDist(d)) => SymbolicDist.T.toString(d)
|
| `SymbolicDist(d) => SymbolicDist.T.toString(d)
|
||||||
| `Leaf(`RenderedDist(_)) => "[shape]"
|
| `RenderedDist(_) => "[shape]"
|
||||||
| `Operation(op) => Operation.T.toString(toString, op);
|
| op => Operation.T.toString(toString, op);
|
||||||
|
|
|
@ -1,91 +1,83 @@
|
||||||
/* This module represents a tree node. */
|
|
||||||
open ExpressionTypes;
|
open ExpressionTypes;
|
||||||
open ExpressionTypes.ExpressionTree;
|
open ExpressionTypes.ExpressionTree;
|
||||||
|
|
||||||
type t = node;
|
type t = node;
|
||||||
type tResult = node => result(node, string);
|
type tResult = node => result(node, string);
|
||||||
|
|
||||||
|
type renderParams = {
|
||||||
|
sampleCount: int,
|
||||||
|
};
|
||||||
|
|
||||||
/* Given two random variables A and B, this returns the distribution
|
/* Given two random variables A and B, this returns the distribution
|
||||||
of a new variable that is the result of the operation on A and B.
|
of a new variable that is the result of the operation on A and B.
|
||||||
For instance, normal(0, 1) + normal(1, 1) -> normal(1, 2).
|
For instance, normal(0, 1) + normal(1, 1) -> normal(1, 2).
|
||||||
In general, this is implemented via convolution. */
|
In general, this is implemented via convolution. */
|
||||||
module AlgebraicCombination = {
|
module AlgebraicCombination = {
|
||||||
let toTreeNode = (op, t1, t2) =>
|
let tryAnalyticalSimplification = (operation, t1: t, t2: t) =>
|
||||||
`Operation(`AlgebraicCombination((op, t1, t2)));
|
switch (operation, t1, t2) {
|
||||||
let tryAnalyticalSolution =
|
| (operation,
|
||||||
fun
|
`SymbolicDist(d1),
|
||||||
| `Operation(
|
`SymbolicDist(d2),
|
||||||
`AlgebraicCombination(
|
) =>
|
||||||
operation,
|
switch (SymbolicDist.T.tryAnalyticalSimplification(d1, d2, operation)) {
|
||||||
`Leaf(`SymbolicDist(d1)),
|
| `AnalyticalSolution(symbolicDist) => Ok(`SymbolicDist(symbolicDist))
|
||||||
`Leaf(`SymbolicDist(d2)),
|
|
||||||
),
|
|
||||||
) as t =>
|
|
||||||
switch (SymbolicDist.T.attemptAnalyticalOperation(d1, d2, operation)) {
|
|
||||||
| `AnalyticalSolution(symbolicDist) =>
|
|
||||||
Ok(`Leaf(`SymbolicDist(symbolicDist)))
|
|
||||||
| `Error(er) => Error(er)
|
| `Error(er) => Error(er)
|
||||||
| `NoSolution => Ok(t)
|
| `NoSolution => Ok(`AlgebraicCombination(operation, t1, t2))
|
||||||
}
|
}
|
||||||
| t => Ok(t);
|
| _ => Ok(`AlgebraicCombination(operation, t1, t2))
|
||||||
|
};
|
||||||
|
|
||||||
// todo: I don't like the name evaluateNumerically that much, if this renders and does it algebraically. It's tricky.
|
let combineAsShapes = (toLeaf, renderParams, algebraicOp, t1, t2) => {
|
||||||
let evaluateNumerically = (algebraicOp, operationToLeaf, t1, t2) => {
|
let renderShape = r => toLeaf(renderParams, `Render(r));
|
||||||
// force rendering into shapes
|
|
||||||
let renderShape = r => operationToLeaf(`Render(r));
|
|
||||||
switch (renderShape(t1), renderShape(t2)) {
|
switch (renderShape(t1), renderShape(t2)) {
|
||||||
| (Ok(`Leaf(`RenderedDist(s1))), Ok(`Leaf(`RenderedDist(s2)))) =>
|
| (Ok(`RenderedDist(s1)), Ok(`RenderedDist(s2))) =>
|
||||||
Ok(
|
Ok(
|
||||||
`Leaf(
|
|
||||||
`RenderedDist(
|
`RenderedDist(
|
||||||
Distributions.Shape.combineAlgebraically(algebraicOp, s1, s2),
|
Distributions.Shape.combineAlgebraically(algebraicOp, s1, s2),
|
||||||
),
|
),
|
||||||
),
|
|
||||||
)
|
)
|
||||||
| (Error(e1), _) => Error(e1)
|
| (Error(e1), _) => Error(e1)
|
||||||
| (_, Error(e2)) => Error(e2)
|
| (_, Error(e2)) => Error(e2)
|
||||||
| _ => Error("Could not render shapes.")
|
| _ => Error("Algebraic combination: rendering failed.")
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
let toLeaf =
|
let operationToLeaf =
|
||||||
(
|
(
|
||||||
operationToLeaf,
|
toLeaf,
|
||||||
|
renderParams: renderParams,
|
||||||
algebraicOp: ExpressionTypes.algebraicOperation,
|
algebraicOp: ExpressionTypes.algebraicOperation,
|
||||||
t1: t,
|
t1: t,
|
||||||
t2: t,
|
t2: t,
|
||||||
)
|
)
|
||||||
: result(node, string) =>
|
: result(node, string) =>
|
||||||
toTreeNode(algebraicOp, t1, t2)
|
|
||||||
|> tryAnalyticalSolution
|
algebraicOp
|
||||||
|
|> tryAnalyticalSimplification(_, t1, t2)
|
||||||
|> E.R.bind(
|
|> E.R.bind(
|
||||||
_,
|
_,
|
||||||
fun
|
fun
|
||||||
| `Leaf(d) => Ok(`Leaf(d)) // the analytical simplifaction worked, nice!
|
| `SymbolicDist(d) as t => Ok(t)
|
||||||
| `Operation(_) =>
|
| _ => combineAsShapes(toLeaf, renderParams, algebraicOp, t1, t2)
|
||||||
// if not, run the convolution
|
|
||||||
evaluateNumerically(algebraicOp, operationToLeaf, t1, t2),
|
|
||||||
);
|
);
|
||||||
};
|
};
|
||||||
|
|
||||||
module VerticalScaling = {
|
module VerticalScaling = {
|
||||||
let toLeaf = (operationToLeaf, scaleOp, t, scaleBy) => {
|
let operationToLeaf = (toLeaf, renderParams, scaleOp, t, scaleBy) => {
|
||||||
// scaleBy has to be a single float, otherwise we'll return an error.
|
// scaleBy has to be a single float, otherwise we'll return an error.
|
||||||
let fn = Operation.Scale.toFn(scaleOp);
|
let fn = Operation.Scale.toFn(scaleOp);
|
||||||
let knownIntegralSumFn = Operation.Scale.toKnownIntegralSumFn(scaleOp);
|
let knownIntegralSumFn = Operation.Scale.toKnownIntegralSumFn(scaleOp);
|
||||||
let renderedShape = operationToLeaf(`Render(t));
|
let renderedShape = toLeaf(renderParams, `Render(t));
|
||||||
|
|
||||||
switch (renderedShape, scaleBy) {
|
switch (renderedShape, scaleBy) {
|
||||||
| (Ok(`Leaf(`RenderedDist(rs))), `Leaf(`SymbolicDist(`Float(sm)))) =>
|
| (Ok(`RenderedDist(rs)), `SymbolicDist(`Float(sm))) =>
|
||||||
Ok(
|
Ok(
|
||||||
`Leaf(
|
|
||||||
`RenderedDist(
|
`RenderedDist(
|
||||||
Distributions.Shape.T.mapY(
|
Distributions.Shape.T.mapY(
|
||||||
~knownIntegralSumFn=knownIntegralSumFn(sm),
|
~knownIntegralSumFn=knownIntegralSumFn(sm),
|
||||||
fn(sm),
|
fn(sm),
|
||||||
rs,
|
rs,
|
||||||
),
|
),
|
||||||
),
|
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
| (Error(e1), _) => Error(e1)
|
| (Error(e1), _) => Error(e1)
|
||||||
|
@ -95,31 +87,27 @@ module VerticalScaling = {
|
||||||
};
|
};
|
||||||
|
|
||||||
module PointwiseCombination = {
|
module PointwiseCombination = {
|
||||||
let pointwiseAdd = (operationToLeaf, t1, t2) => {
|
let pointwiseAdd = (toLeaf, renderParams, t1, t2) => {
|
||||||
let renderedShape1 = operationToLeaf(`Render(t1));
|
let renderShape = r => toLeaf(renderParams, `Render(r));
|
||||||
let renderedShape2 = operationToLeaf(`Render(t2));
|
switch (renderShape(t1), renderShape(t2)) {
|
||||||
|
| (Ok(`RenderedDist(rs1)), Ok(`RenderedDist(rs2))) =>
|
||||||
switch (renderedShape1, renderedShape2) {
|
|
||||||
| (Ok(`Leaf(`RenderedDist(rs1))), Ok(`Leaf(`RenderedDist(rs2)))) =>
|
|
||||||
Ok(
|
Ok(
|
||||||
`Leaf(
|
`RenderedDist(
|
||||||
`RenderedDist(
|
Distributions.Shape.combinePointwise(
|
||||||
Distributions.Shape.combinePointwise(
|
~knownIntegralSumsFn=(a, b) => Some(a +. b),
|
||||||
~knownIntegralSumsFn=(a, b) => Some(a +. b),
|
(+.),
|
||||||
(+.),
|
rs1,
|
||||||
rs1,
|
rs2,
|
||||||
rs2,
|
|
||||||
),
|
|
||||||
),
|
),
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
| (Error(e1), _) => Error(e1)
|
| (Error(e1), _) => Error(e1)
|
||||||
| (_, Error(e2)) => Error(e2)
|
| (_, Error(e2)) => Error(e2)
|
||||||
| _ => Error("Could not perform pointwise addition.")
|
| _ => Error("Pointwise combination: rendering failed.")
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
let pointwiseMultiply = (operationToLeaf, t1, t2) => {
|
let pointwiseMultiply = (toLeaf, renderParams, t1, t2) => {
|
||||||
// TODO: construct a function that we can easily sample from, to construct
|
// TODO: construct a function that we can easily sample from, to construct
|
||||||
// a RenderedDist. Use the xMin and xMax of the rendered shapes to tell the sampling function where to look.
|
// a RenderedDist. Use the xMin and xMax of the rendered shapes to tell the sampling function where to look.
|
||||||
Error(
|
Error(
|
||||||
|
@ -127,84 +115,72 @@ module PointwiseCombination = {
|
||||||
);
|
);
|
||||||
};
|
};
|
||||||
|
|
||||||
let toLeaf = (operationToLeaf, pointwiseOp, t1, t2) => {
|
let operationToLeaf = (toLeaf, renderParams, pointwiseOp, t1, t2) => {
|
||||||
switch (pointwiseOp) {
|
switch (pointwiseOp) {
|
||||||
| `Add => pointwiseAdd(operationToLeaf, t1, t2)
|
| `Add => pointwiseAdd(toLeaf, renderParams, t1, t2)
|
||||||
| `Multiply => pointwiseMultiply(operationToLeaf, t1, t2)
|
| `Multiply => pointwiseMultiply(toLeaf, renderParams, t1, t2)
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
module Truncate = {
|
module Truncate = {
|
||||||
module Simplify = {
|
let trySimplification = (leftCutoff, rightCutoff, t) => {
|
||||||
let tryTruncatingNothing: tResult =
|
switch (leftCutoff, rightCutoff, t) {
|
||||||
fun
|
| (None, None, t) => Ok(t)
|
||||||
| `Operation(`Truncate(None, None, `Leaf(d))) => Ok(`Leaf(d))
|
| (lc, rc, `SymbolicDist(`Uniform(u))) => {
|
||||||
| t => Ok(t);
|
// just create a new Uniform distribution
|
||||||
|
let nu: SymbolicTypes.uniform = u;
|
||||||
let tryTruncatingUniform: tResult =
|
let newLow = max(E.O.default(neg_infinity, lc), nu.low);
|
||||||
fun
|
let newHigh = min(E.O.default(infinity, rc), nu.high);
|
||||||
| `Operation(`Truncate(lc, rc, `Leaf(`SymbolicDist(`Uniform(u))))) => {
|
Ok(`SymbolicDist(`Uniform({low: newLow, high: newHigh})));
|
||||||
// just create a new Uniform distribution
|
}
|
||||||
let newLow = max(E.O.default(neg_infinity, lc), u.low);
|
| (_, _, t) => Ok(t)
|
||||||
let newHigh = min(E.O.default(infinity, rc), u.high);
|
|
||||||
Ok(`Leaf(`SymbolicDist(`Uniform({low: newLow, high: newHigh}))));
|
|
||||||
}
|
|
||||||
| t => Ok(t);
|
|
||||||
|
|
||||||
let attempt = (leftCutoff, rightCutoff, t): result(node, string) => {
|
|
||||||
let originalTreeNode =
|
|
||||||
`Operation(`Truncate((leftCutoff, rightCutoff, t)));
|
|
||||||
|
|
||||||
originalTreeNode
|
|
||||||
|> tryTruncatingNothing
|
|
||||||
|> E.R.bind(_, tryTruncatingUniform);
|
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
let evaluateNumerically = (leftCutoff, rightCutoff, operationToLeaf, t) => {
|
let truncateAsShape = (toLeaf, renderParams, leftCutoff, rightCutoff, t) => {
|
||||||
// TODO: use named args in renderToShape; if we're lucky we can at least get the tail
|
// TODO: use named args in renderToShape; if we're lucky we can at least get the tail
|
||||||
// of a distribution we otherwise wouldn't get at all
|
// of a distribution we otherwise wouldn't get at all
|
||||||
let renderedShape = operationToLeaf(`Render(t));
|
let renderedShape = toLeaf(renderParams, `Render(t));
|
||||||
|
|
||||||
switch (renderedShape) {
|
switch (renderedShape) {
|
||||||
| Ok(`Leaf(`RenderedDist(rs))) =>
|
| Ok(`RenderedDist(rs)) => {
|
||||||
let truncatedShape =
|
let truncatedShape =
|
||||||
rs |> Distributions.Shape.T.truncate(leftCutoff, rightCutoff);
|
rs |> Distributions.Shape.T.truncate(leftCutoff, rightCutoff);
|
||||||
Ok(`Leaf(`RenderedDist(rs)));
|
Ok(`RenderedDist(rs));
|
||||||
|
}
|
||||||
| Error(e1) => Error(e1)
|
| Error(e1) => Error(e1)
|
||||||
| _ => Error("Could not truncate distribution.")
|
| _ => Error("Could not truncate distribution.")
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
let toLeaf =
|
let operationToLeaf =
|
||||||
(
|
(
|
||||||
operationToLeaf,
|
toLeaf,
|
||||||
leftCutoff: option(float),
|
renderParams,
|
||||||
rightCutoff: option(float),
|
leftCutoff: option(float),
|
||||||
t: node,
|
rightCutoff: option(float),
|
||||||
)
|
t: node,
|
||||||
: result(node, string) => {
|
)
|
||||||
|
: result(node, string) => {
|
||||||
t
|
t
|
||||||
|> Simplify.attempt(leftCutoff, rightCutoff)
|
|> trySimplification(leftCutoff, rightCutoff)
|
||||||
|> E.R.bind(
|
|> E.R.bind(
|
||||||
_,
|
_,
|
||||||
fun
|
fun
|
||||||
| `Leaf(d) => Ok(`Leaf(d)) // the analytical simplifaction worked, nice!
|
| `SymbolicDist(d) as t => Ok(t)
|
||||||
| `Operation(_) =>
|
| _ => truncateAsShape(toLeaf, renderParams, leftCutoff, rightCutoff, t),
|
||||||
evaluateNumerically(leftCutoff, rightCutoff, operationToLeaf, t),
|
);
|
||||||
); // if not, run the convolution
|
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
module Normalize = {
|
module Normalize = {
|
||||||
let rec toLeaf = (operationToLeaf, t: node): result(node, string) => {
|
let rec operationToLeaf = (toLeaf, renderParams, t: node): result(node, string) => {
|
||||||
switch (t) {
|
switch (t) {
|
||||||
| `Leaf(`RenderedDist(s)) =>
|
| `RenderedDist(s) =>
|
||||||
Ok(`Leaf(`RenderedDist(Distributions.Shape.T.normalize(s))))
|
Ok(`RenderedDist(Distributions.Shape.T.normalize(s)))
|
||||||
| `Leaf(`SymbolicDist(_)) => Ok(t)
|
| `SymbolicDist(_) => Ok(t)
|
||||||
| `Operation(op) =>
|
| _ => t |> toLeaf(renderParams) |> E.R.bind(_, operationToLeaf(toLeaf, renderParams))
|
||||||
operationToLeaf(op) |> E.R.bind(_, toLeaf(operationToLeaf))
|
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
@ -212,83 +188,79 @@ module Normalize = {
|
||||||
module FloatFromDist = {
|
module FloatFromDist = {
|
||||||
let symbolicToLeaf = (distToFloatOp: distToFloatOperation, s) => {
|
let symbolicToLeaf = (distToFloatOp: distToFloatOperation, s) => {
|
||||||
SymbolicDist.T.operate(distToFloatOp, s)
|
SymbolicDist.T.operate(distToFloatOp, s)
|
||||||
|> E.R.bind(_, v => Ok(`Leaf(`SymbolicDist(`Float(v)))));
|
|> E.R.bind(_, v => Ok(`SymbolicDist(`Float(v))));
|
||||||
};
|
};
|
||||||
let renderedToLeaf =
|
let renderedToLeaf =
|
||||||
(distToFloatOp: distToFloatOperation, rs: DistTypes.shape)
|
(distToFloatOp: distToFloatOperation, rs: DistTypes.shape)
|
||||||
: result(node, string) => {
|
: result(node, string) => {
|
||||||
Distributions.Shape.operate(distToFloatOp, rs)
|
Distributions.Shape.operate(distToFloatOp, rs)
|
||||||
|> (v => Ok(`Leaf(`SymbolicDist(`Float(v)))));
|
|> (v => Ok(`SymbolicDist(`Float(v))));
|
||||||
};
|
};
|
||||||
let rec toLeaf =
|
let rec operationToLeaf =
|
||||||
(operationToLeaf, distToFloatOp: distToFloatOperation, t: node)
|
(toLeaf, renderParams, distToFloatOp: distToFloatOperation, t: node)
|
||||||
: result(node, string) => {
|
: result(node, string) => {
|
||||||
switch (t) {
|
switch (t) {
|
||||||
| `Leaf(`SymbolicDist(s)) => symbolicToLeaf(distToFloatOp, s) // we want to evaluate the distToFloatOp on the symbolic dist
|
| `SymbolicDist(s) => symbolicToLeaf(distToFloatOp, s)
|
||||||
| `Leaf(`RenderedDist(rs)) => renderedToLeaf(distToFloatOp, rs)
|
| `RenderedDist(rs) => renderedToLeaf(distToFloatOp, rs)
|
||||||
| `Operation(op) =>
|
| _ => t |> toLeaf(renderParams) |> E.R.bind(_, operationToLeaf(toLeaf, renderParams, distToFloatOp))
|
||||||
E.R.bind(operationToLeaf(op), toLeaf(operationToLeaf, distToFloatOp))
|
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
module Render = {
|
module Render = {
|
||||||
let rec toLeaf =
|
let rec operationToLeaf =
|
||||||
(
|
(
|
||||||
operationToLeaf: operation => result(t, string),
|
toLeaf,
|
||||||
sampleCount: int,
|
renderParams,
|
||||||
t: node,
|
t: node,
|
||||||
)
|
)
|
||||||
: result(t, string) => {
|
: result(t, string) => {
|
||||||
switch (t) {
|
switch (t) {
|
||||||
| `Leaf(`SymbolicDist(d)) =>
|
| `SymbolicDist(d) =>
|
||||||
Ok(`Leaf(`RenderedDist(SymbolicDist.T.toShape(sampleCount, d))))
|
Ok(`RenderedDist(SymbolicDist.T.toShape(renderParams.sampleCount, d)))
|
||||||
| `Leaf(`RenderedDist(_)) as t => Ok(t) // already a rendered shape, we're done here
|
| `RenderedDist(_) as t => Ok(t) // already a rendered shape, we're done here
|
||||||
| `Operation(op) =>
|
| _ => t |> toLeaf(renderParams) |> E.R.bind(_, operationToLeaf(toLeaf, renderParams))
|
||||||
E.R.bind(operationToLeaf(op), toLeaf(operationToLeaf, sampleCount))
|
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
let rec operationToLeaf =
|
|
||||||
(sampleCount: int, op: operation): result(t, string) => {
|
|
||||||
// the functions that convert the Operation nodes to Leaf nodes need to
|
|
||||||
// have a way to call this function on their children, if their children are themselves Operation nodes.
|
|
||||||
switch (op) {
|
|
||||||
| `AlgebraicCombination(algebraicOp, t1, t2) =>
|
|
||||||
AlgebraicCombination.toLeaf(
|
|
||||||
operationToLeaf(sampleCount),
|
|
||||||
algebraicOp,
|
|
||||||
t1,
|
|
||||||
t2 // we want to give it the option to render or simply leave it as is
|
|
||||||
)
|
|
||||||
| `PointwiseCombination(pointwiseOp, t1, t2) =>
|
|
||||||
PointwiseCombination.toLeaf(
|
|
||||||
operationToLeaf(sampleCount),
|
|
||||||
pointwiseOp,
|
|
||||||
t1,
|
|
||||||
t2,
|
|
||||||
)
|
|
||||||
| `VerticalScaling(scaleOp, t, scaleBy) =>
|
|
||||||
VerticalScaling.toLeaf(operationToLeaf(sampleCount), scaleOp, t, scaleBy)
|
|
||||||
| `Truncate(leftCutoff, rightCutoff, t) =>
|
|
||||||
Truncate.toLeaf(operationToLeaf(sampleCount), leftCutoff, rightCutoff, t)
|
|
||||||
| `FloatFromDist(distToFloatOp, t) =>
|
|
||||||
FloatFromDist.toLeaf(operationToLeaf(sampleCount), distToFloatOp, t)
|
|
||||||
| `Normalize(t) => Normalize.toLeaf(operationToLeaf(sampleCount), t)
|
|
||||||
| `Render(t) => Render.toLeaf(operationToLeaf(sampleCount), sampleCount, t)
|
|
||||||
};
|
|
||||||
};
|
|
||||||
|
|
||||||
/* This function recursively goes through the nodes of the parse tree,
|
/* This function recursively goes through the nodes of the parse tree,
|
||||||
replacing each Operation node and its subtree with a Data node.
|
replacing each Operation node and its subtree with a Data node.
|
||||||
Whenever possible, the replacement produces a new Symbolic Data node,
|
Whenever possible, the replacement produces a new Symbolic Data node,
|
||||||
but most often it will produce a RenderedDist.
|
but most often it will produce a RenderedDist.
|
||||||
This function is used mainly to turn a parse tree into a single RenderedDist
|
This function is used mainly to turn a parse tree into a single RenderedDist
|
||||||
that can then be displayed to the user. */
|
that can then be displayed to the user. */
|
||||||
let toLeaf = (node: t, sampleCount: int): result(t, string) => {
|
let rec toLeaf = (renderParams, node: t): result(t, string) => {
|
||||||
switch (node) {
|
switch (node) {
|
||||||
| `Leaf(d) => Ok(`Leaf(d))
|
// Leaf nodes just stay leaf nodes
|
||||||
| `Operation(op) => operationToLeaf(sampleCount, op)
|
| `SymbolicDist(_)
|
||||||
|
| `RenderedDist(_) => Ok(node)
|
||||||
|
// Operations need to be turned into leaves
|
||||||
|
| `AlgebraicCombination(algebraicOp, t1, t2) =>
|
||||||
|
AlgebraicCombination.operationToLeaf(
|
||||||
|
toLeaf,
|
||||||
|
renderParams,
|
||||||
|
algebraicOp,
|
||||||
|
t1,
|
||||||
|
t2
|
||||||
|
)
|
||||||
|
| `PointwiseCombination(pointwiseOp, t1, t2) =>
|
||||||
|
PointwiseCombination.operationToLeaf(
|
||||||
|
toLeaf,
|
||||||
|
renderParams,
|
||||||
|
pointwiseOp,
|
||||||
|
t1,
|
||||||
|
t2,
|
||||||
|
)
|
||||||
|
| `VerticalScaling(scaleOp, t, scaleBy) =>
|
||||||
|
VerticalScaling.operationToLeaf(
|
||||||
|
toLeaf, renderParams, scaleOp, t, scaleBy
|
||||||
|
)
|
||||||
|
| `Truncate(leftCutoff, rightCutoff, t) =>
|
||||||
|
Truncate.operationToLeaf(toLeaf, renderParams, leftCutoff, rightCutoff, t)
|
||||||
|
| `FloatFromDist(distToFloatOp, t) =>
|
||||||
|
FloatFromDist.operationToLeaf(toLeaf, renderParams, distToFloatOp, t)
|
||||||
|
| `Normalize(t) => Normalize.operationToLeaf(toLeaf, renderParams, t)
|
||||||
|
| `Render(t) => Render.operationToLeaf(toLeaf, renderParams, t)
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
|
@ -3,22 +3,18 @@ type pointwiseOperation = [ | `Add | `Multiply];
|
||||||
type scaleOperation = [ | `Multiply | `Exponentiate | `Log];
|
type scaleOperation = [ | `Multiply | `Exponentiate | `Log];
|
||||||
type distToFloatOperation = [ | `Pdf(float) | `Inv(float) | `Mean | `Sample];
|
type distToFloatOperation = [ | `Pdf(float) | `Inv(float) | `Mean | `Sample];
|
||||||
|
|
||||||
type abstractOperation('a) = [
|
|
||||||
| `AlgebraicCombination(algebraicOperation, 'a, 'a)
|
|
||||||
| `PointwiseCombination(pointwiseOperation, 'a, 'a)
|
|
||||||
| `VerticalScaling(scaleOperation, 'a, 'a)
|
|
||||||
| `Render('a)
|
|
||||||
| `Truncate(option(float), option(float), 'a)
|
|
||||||
| `Normalize('a)
|
|
||||||
| `FloatFromDist(distToFloatOperation, 'a)
|
|
||||||
];
|
|
||||||
|
|
||||||
module ExpressionTree = {
|
module ExpressionTree = {
|
||||||
type leaf = [
|
type node = [
|
||||||
|
// leaf nodes:
|
||||||
| `SymbolicDist(SymbolicTypes.symbolicDist)
|
| `SymbolicDist(SymbolicTypes.symbolicDist)
|
||||||
| `RenderedDist(DistTypes.shape)
|
| `RenderedDist(DistTypes.shape)
|
||||||
|
// operations:
|
||||||
|
| `AlgebraicCombination(algebraicOperation, node, node)
|
||||||
|
| `PointwiseCombination(pointwiseOperation, node, node)
|
||||||
|
| `VerticalScaling(scaleOperation, node, node)
|
||||||
|
| `Render(node)
|
||||||
|
| `Truncate(option(float), option(float), node)
|
||||||
|
| `Normalize(node)
|
||||||
|
| `FloatFromDist(distToFloatOperation, node)
|
||||||
];
|
];
|
||||||
|
|
||||||
type node = [ | `Leaf(leaf) | `Operation(operation)]
|
|
||||||
and operation = abstractOperation(node);
|
|
||||||
};
|
};
|
||||||
|
|
|
@ -86,29 +86,29 @@ module MathAdtToDistDst = {
|
||||||
);
|
);
|
||||||
};
|
};
|
||||||
|
|
||||||
let normal: array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
let normal:
|
||||||
|
array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
||||||
fun
|
fun
|
||||||
| [|Value(mean), Value(stdev)|] =>
|
| [|Value(mean), Value(stdev)|] =>
|
||||||
Ok(`Leaf(`SymbolicDist(`Normal({mean, stdev}))))
|
Ok(`SymbolicDist(`Normal({mean, stdev})))
|
||||||
| _ => Error("Wrong number of variables in normal distribution");
|
| _ => Error("Wrong number of variables in normal distribution");
|
||||||
|
|
||||||
let lognormal: array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
let lognormal:
|
||||||
|
array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
||||||
fun
|
fun
|
||||||
| [|Value(mu), Value(sigma)|] =>
|
| [|Value(mu), Value(sigma)|] =>
|
||||||
Ok(`Leaf(`SymbolicDist(`Lognormal({mu, sigma}))))
|
Ok(`SymbolicDist(`Lognormal({mu, sigma})))
|
||||||
| [|Object(o)|] => {
|
| [|Object(o)|] => {
|
||||||
let g = Js.Dict.get(o);
|
let g = Js.Dict.get(o);
|
||||||
switch (g("mean"), g("stdev"), g("mu"), g("sigma")) {
|
switch (g("mean"), g("stdev"), g("mu"), g("sigma")) {
|
||||||
| (Some(Value(mean)), Some(Value(stdev)), _, _) =>
|
| (Some(Value(mean)), Some(Value(stdev)), _, _) =>
|
||||||
Ok(
|
Ok(
|
||||||
`Leaf(
|
`SymbolicDist(
|
||||||
`SymbolicDist(
|
SymbolicDist.Lognormal.fromMeanAndStdev(mean, stdev),
|
||||||
SymbolicDist.Lognormal.fromMeanAndStdev(mean, stdev),
|
|
||||||
),
|
|
||||||
),
|
),
|
||||||
)
|
)
|
||||||
| (_, _, Some(Value(mu)), Some(Value(sigma))) =>
|
| (_, _, Some(Value(mu)), Some(Value(sigma))) =>
|
||||||
Ok(`Leaf(`SymbolicDist(`Lognormal({mu, sigma}))))
|
Ok(`SymbolicDist(`Lognormal({mu, sigma})))
|
||||||
| _ => Error("Lognormal distribution would need mean and stdev")
|
| _ => Error("Lognormal distribution would need mean and stdev")
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
@ -117,51 +117,48 @@ module MathAdtToDistDst = {
|
||||||
let to_: array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
let to_: array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
||||||
fun
|
fun
|
||||||
| [|Value(low), Value(high)|] when low <= 0.0 && low < high => {
|
| [|Value(low), Value(high)|] when low <= 0.0 && low < high => {
|
||||||
Ok(
|
Ok(`SymbolicDist(SymbolicDist.Normal.from90PercentCI(low, high)));
|
||||||
`Leaf(
|
|
||||||
`SymbolicDist(SymbolicDist.Normal.from90PercentCI(low, high)),
|
|
||||||
),
|
|
||||||
);
|
|
||||||
}
|
}
|
||||||
| [|Value(low), Value(high)|] when low < high => {
|
| [|Value(low), Value(high)|] when low < high => {
|
||||||
Ok(
|
Ok(
|
||||||
`Leaf(
|
`SymbolicDist(SymbolicDist.Lognormal.from90PercentCI(low, high)),
|
||||||
`SymbolicDist(SymbolicDist.Lognormal.from90PercentCI(low, high)),
|
|
||||||
),
|
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
| [|Value(_), Value(_)|] =>
|
| [|Value(_), Value(_)|] =>
|
||||||
Error("Low value must be less than high value.")
|
Error("Low value must be less than high value.")
|
||||||
| _ => Error("Wrong number of variables in lognormal distribution");
|
| _ => Error("Wrong number of variables in lognormal distribution");
|
||||||
|
|
||||||
let uniform: array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
let uniform:
|
||||||
|
array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
||||||
fun
|
fun
|
||||||
| [|Value(low), Value(high)|] =>
|
| [|Value(low), Value(high)|] =>
|
||||||
Ok(`Leaf(`SymbolicDist(`Uniform({low, high}))))
|
Ok(`SymbolicDist(`Uniform({low, high})))
|
||||||
| _ => Error("Wrong number of variables in lognormal distribution");
|
| _ => Error("Wrong number of variables in lognormal distribution");
|
||||||
|
|
||||||
let beta: array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
let beta: array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
||||||
fun
|
fun
|
||||||
| [|Value(alpha), Value(beta)|] =>
|
| [|Value(alpha), Value(beta)|] =>
|
||||||
Ok(`Leaf(`SymbolicDist(`Beta({alpha, beta}))))
|
Ok(`SymbolicDist(`Beta({alpha, beta})))
|
||||||
| _ => Error("Wrong number of variables in lognormal distribution");
|
| _ => Error("Wrong number of variables in lognormal distribution");
|
||||||
|
|
||||||
let exponential: array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
let exponential:
|
||||||
|
array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
||||||
fun
|
fun
|
||||||
| [|Value(rate)|] =>
|
| [|Value(rate)|] => Ok(`SymbolicDist(`Exponential({rate: rate})))
|
||||||
Ok(`Leaf(`SymbolicDist(`Exponential({rate: rate}))))
|
|
||||||
| _ => Error("Wrong number of variables in Exponential distribution");
|
| _ => Error("Wrong number of variables in Exponential distribution");
|
||||||
|
|
||||||
let cauchy: array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
let cauchy:
|
||||||
|
array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
||||||
fun
|
fun
|
||||||
| [|Value(local), Value(scale)|] =>
|
| [|Value(local), Value(scale)|] =>
|
||||||
Ok(`Leaf(`SymbolicDist(`Cauchy({local, scale}))))
|
Ok(`SymbolicDist(`Cauchy({local, scale})))
|
||||||
| _ => Error("Wrong number of variables in cauchy distribution");
|
| _ => Error("Wrong number of variables in cauchy distribution");
|
||||||
|
|
||||||
let triangular: array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
let triangular:
|
||||||
|
array(arg) => result(ExpressionTypes.ExpressionTree.node, string) =
|
||||||
fun
|
fun
|
||||||
| [|Value(low), Value(medium), Value(high)|] =>
|
| [|Value(low), Value(medium), Value(high)|] =>
|
||||||
Ok(`Leaf(`SymbolicDist(`Triangular({low, medium, high}))))
|
Ok(`SymbolicDist(`Triangular({low, medium, high})))
|
||||||
| _ => Error("Wrong number of variables in triangle distribution");
|
| _ => Error("Wrong number of variables in triangle distribution");
|
||||||
|
|
||||||
let multiModal =
|
let multiModal =
|
||||||
|
@ -192,30 +189,24 @@ module MathAdtToDistDst = {
|
||||||
|> E.A.fmapi((index, t) => {
|
|> E.A.fmapi((index, t) => {
|
||||||
let w = weights |> E.A.get(_, index) |> E.O.default(1.0);
|
let w = weights |> E.A.get(_, index) |> E.O.default(1.0);
|
||||||
|
|
||||||
`Operation(
|
`VerticalScaling((`Multiply, t, `SymbolicDist(`Float(w))));
|
||||||
`VerticalScaling((
|
|
||||||
`Multiply,
|
|
||||||
t,
|
|
||||||
`Leaf(`SymbolicDist(`Float(w))),
|
|
||||||
)),
|
|
||||||
);
|
|
||||||
});
|
});
|
||||||
|
|
||||||
let pointwiseSum =
|
let pointwiseSum =
|
||||||
components
|
components
|
||||||
|> Js.Array.sliceFrom(1)
|
|> Js.Array.sliceFrom(1)
|
||||||
|> E.A.fold_left(
|
|> E.A.fold_left(
|
||||||
(acc, x) => {
|
(acc, x) => {`PointwiseCombination((`Add, acc, x))},
|
||||||
`Operation(`PointwiseCombination((`Add, acc, x)))
|
|
||||||
},
|
|
||||||
E.A.unsafe_get(components, 0),
|
E.A.unsafe_get(components, 0),
|
||||||
);
|
);
|
||||||
|
|
||||||
Ok(`Operation(`Normalize(pointwiseSum)));
|
Ok(`Normalize(pointwiseSum));
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
let arrayParser = (args: array(arg)): result(ExpressionTypes.ExpressionTree.node, string) => {
|
let arrayParser =
|
||||||
|
(args: array(arg))
|
||||||
|
: result(ExpressionTypes.ExpressionTree.node, string) => {
|
||||||
let samples =
|
let samples =
|
||||||
args
|
args
|
||||||
|> E.A.fmap(
|
|> E.A.fmap(
|
||||||
|
@ -235,15 +226,18 @@ module MathAdtToDistDst = {
|
||||||
SymbolicDist.ContinuousShape.make(_pdf, cdf);
|
SymbolicDist.ContinuousShape.make(_pdf, cdf);
|
||||||
});
|
});
|
||||||
switch (shape) {
|
switch (shape) {
|
||||||
| Some(s) => Ok(`Leaf(`SymbolicDist(`ContinuousShape(s))))
|
| Some(s) => Ok(`SymbolicDist(`ContinuousShape(s)))
|
||||||
| None => Error("Rendering did not work")
|
| None => Error("Rendering did not work")
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
let operationParser =
|
let operationParser =
|
||||||
(name: string, args: array(result(ExpressionTypes.ExpressionTree.node, string))) => {
|
(
|
||||||
let toOkAlgebraic = r => Ok(`Operation(`AlgebraicCombination(r)));
|
name: string,
|
||||||
let toOkTrunctate = r => Ok(`Operation(`Truncate(r)));
|
args: array(result(ExpressionTypes.ExpressionTree.node, string)),
|
||||||
|
) => {
|
||||||
|
let toOkAlgebraic = r => Ok(`AlgebraicCombination(r));
|
||||||
|
let toOkTrunctate = r => Ok(`Truncate(r));
|
||||||
switch (name, args) {
|
switch (name, args) {
|
||||||
| ("add", [|Ok(l), Ok(r)|]) => toOkAlgebraic((`Add, l, r))
|
| ("add", [|Ok(l), Ok(r)|]) => toOkAlgebraic((`Add, l, r))
|
||||||
| ("add", _) => Error("Addition needs two operands")
|
| ("add", _) => Error("Addition needs two operands")
|
||||||
|
@ -254,11 +248,11 @@ module MathAdtToDistDst = {
|
||||||
| ("divide", [|Ok(l), Ok(r)|]) => toOkAlgebraic((`Divide, l, r))
|
| ("divide", [|Ok(l), Ok(r)|]) => toOkAlgebraic((`Divide, l, r))
|
||||||
| ("divide", _) => Error("Division needs two operands")
|
| ("divide", _) => Error("Division needs two operands")
|
||||||
| ("pow", _) => Error("Exponentiation is not yet supported.")
|
| ("pow", _) => Error("Exponentiation is not yet supported.")
|
||||||
| ("leftTruncate", [|Ok(d), Ok(`Leaf(`SymbolicDist(`Float(lc))))|]) =>
|
| ("leftTruncate", [|Ok(d), Ok(`SymbolicDist(`Float(lc)))|]) =>
|
||||||
toOkTrunctate((Some(lc), None, d))
|
toOkTrunctate((Some(lc), None, d))
|
||||||
| ("leftTruncate", _) =>
|
| ("leftTruncate", _) =>
|
||||||
Error("leftTruncate needs two arguments: the expression and the cutoff")
|
Error("leftTruncate needs two arguments: the expression and the cutoff")
|
||||||
| ("rightTruncate", [|Ok(d), Ok(`Leaf(`SymbolicDist(`Float(rc))))|]) =>
|
| ("rightTruncate", [|Ok(d), Ok(`SymbolicDist(`Float(rc)))|]) =>
|
||||||
toOkTrunctate((None, Some(rc), d))
|
toOkTrunctate((None, Some(rc), d))
|
||||||
| ("rightTruncate", _) =>
|
| ("rightTruncate", _) =>
|
||||||
Error(
|
Error(
|
||||||
|
@ -268,8 +262,8 @@ module MathAdtToDistDst = {
|
||||||
"truncate",
|
"truncate",
|
||||||
[|
|
[|
|
||||||
Ok(d),
|
Ok(d),
|
||||||
Ok(`Leaf(`SymbolicDist(`Float(lc)))),
|
Ok(`SymbolicDist(`Float(lc))),
|
||||||
Ok(`Leaf(`SymbolicDist(`Float(rc)))),
|
Ok(`SymbolicDist(`Float(rc))),
|
||||||
|],
|
|],
|
||||||
) =>
|
) =>
|
||||||
toOkTrunctate((Some(lc), Some(rc), d))
|
toOkTrunctate((Some(lc), Some(rc), d))
|
||||||
|
@ -333,7 +327,7 @@ module MathAdtToDistDst = {
|
||||||
|
|
||||||
let rec nodeParser =
|
let rec nodeParser =
|
||||||
fun
|
fun
|
||||||
| Value(f) => Ok(`Leaf(`SymbolicDist(`Float(f))))
|
| Value(f) => Ok(`SymbolicDist(`Float(f)))
|
||||||
| Fn({name, args}) => functionParser(nodeParser, name, args)
|
| Fn({name, args}) => functionParser(nodeParser, name, args)
|
||||||
| _ => {
|
| _ => {
|
||||||
Error("This type not currently supported");
|
Error("This type not currently supported");
|
||||||
|
|
|
@ -89,5 +89,6 @@ module T = {
|
||||||
| `FloatFromDist(floatFromDistOp, t) =>
|
| `FloatFromDist(floatFromDistOp, t) =>
|
||||||
DistToFloat.format(floatFromDistOp, nodeToString(t))
|
DistToFloat.format(floatFromDistOp, nodeToString(t))
|
||||||
| `Truncate(lc, rc, t) => truncateToString(lc, rc, nodeToString(t))
|
| `Truncate(lc, rc, t) => truncateToString(lc, rc, nodeToString(t))
|
||||||
| `Render(t) => nodeToString(t);
|
| `Render(t) => nodeToString(t)
|
||||||
|
| _ => ""; // SymbolicDist and RenderedDist are handled in ExpressionTree.toString.
|
||||||
};
|
};
|
||||||
|
|
|
@ -269,23 +269,23 @@ module T = {
|
||||||
};
|
};
|
||||||
};
|
};
|
||||||
|
|
||||||
/* This returns an optional that wraps a result. If the optional is None,
|
/* Calling e.g. "Normal.operate" returns an optional that wraps a result.
|
||||||
there is no valid analytic solution. If it Some, it
|
If the optional is None, there is no valid analytic solution. If it Some, it
|
||||||
can still return an error if there is a serious problem,
|
can still return an error if there is a serious problem,
|
||||||
like in the casea of a divide by 0.
|
like in the case of a divide by 0.
|
||||||
*/
|
*/
|
||||||
type analyticalSolutionAttempt = [
|
type analyticalSimplificationResult = [
|
||||||
| `AnalyticalSolution(SymbolicTypes.symbolicDist)
|
| `AnalyticalSolution(SymbolicTypes.symbolicDist)
|
||||||
| `Error(string)
|
| `Error(string)
|
||||||
| `NoSolution
|
| `NoSolution
|
||||||
];
|
];
|
||||||
let attemptAnalyticalOperation =
|
let tryAnalyticalSimplification =
|
||||||
(
|
(
|
||||||
d1: symbolicDist,
|
d1: symbolicDist,
|
||||||
d2: symbolicDist,
|
d2: symbolicDist,
|
||||||
op: ExpressionTypes.algebraicOperation,
|
op: ExpressionTypes.algebraicOperation,
|
||||||
)
|
)
|
||||||
: analyticalSolutionAttempt =>
|
: analyticalSimplificationResult =>
|
||||||
switch (d1, d2) {
|
switch (d1, d2) {
|
||||||
| (`Float(v1), `Float(v2)) =>
|
| (`Float(v1), `Float(v2)) =>
|
||||||
switch (Operation.Algebraic.applyFn(op, v1, v2)) {
|
switch (Operation.Algebraic.applyFn(op, v1, v2)) {
|
||||||
|
|
Loading…
Reference in New Issue
Block a user