Fleshed out AlgebraicCombination
This commit is contained in:
parent
d490af38f0
commit
c5afb2d867
|
@ -115,6 +115,7 @@ let combineShapesContinuousContinuous = (
|
|||
| #Multiply => (m1, m2) => m1 *. m2
|
||||
| #Divide => (m1, mInv2) => m1 *. mInv2
|
||||
| #Exponentiate => (m1, mInv2) => m1 ** mInv2
|
||||
| #Log => (m1, m2) => log(m1) /. log(m2)
|
||||
} // note: here, mInv2 = mean(1 / t2) ~= 1 / mean(t2)
|
||||
|
||||
// TODO: I don't know what the variances are for exponentatiation
|
||||
|
@ -232,6 +233,7 @@ let combineShapesContinuousDiscrete = (
|
|||
}
|
||||
| #Multiply
|
||||
| #Exponentiate
|
||||
| #Log
|
||||
| #Divide =>
|
||||
for j in 0 to t2n - 1 {
|
||||
// creates a new continuous shape for each one of the discrete points, and collects them in outXYShapes.
|
||||
|
|
|
@ -41,7 +41,8 @@ let combineAlgebraically = (op: Operation.algebraicOperation, t1: t, t2: t): t =
|
|||
| (Continuous(m1), Discrete(m2))
|
||||
| (Discrete(m2), Continuous(m1)) =>
|
||||
Continuous.combineAlgebraicallyWithDiscrete(op, m1, m2) |> Continuous.T.toPointSetDist
|
||||
| (Discrete(m1), Discrete(m2)) => Discrete.combineAlgebraically(op, m1, m2) |> Discrete.T.toPointSetDist
|
||||
| (Discrete(m1), Discrete(m2)) =>
|
||||
Discrete.combineAlgebraically(op, m1, m2) |> Discrete.T.toPointSetDist
|
||||
| (m1, m2) => Mixed.combineAlgebraically(op, toMixed(m1), toMixed(m2)) |> Mixed.T.toPointSetDist
|
||||
}
|
||||
|
||||
|
|
|
@ -55,12 +55,6 @@ module OperationType = {
|
|||
| #Sample(int)
|
||||
]
|
||||
|
||||
type scale = [
|
||||
| #Multiply
|
||||
| #Exponentiate
|
||||
| #Log
|
||||
]
|
||||
|
||||
type t = [
|
||||
| #toFloat(toFloat)
|
||||
| #toDist(toDist)
|
||||
|
@ -73,6 +67,7 @@ type operation = OperationType.t
|
|||
module T = {
|
||||
type t = genericDist
|
||||
type toPointSetFn = genericDist => result<PointSetTypes.pointSetDist, error>
|
||||
type toSampleSetFn = genericDist => result<array<float>, error>
|
||||
let sampleN = (n, t: t) => {
|
||||
switch t {
|
||||
| #PointSet(r) => Ok(PointSetDist.sampleNRendered(n, r))
|
||||
|
@ -81,7 +76,7 @@ module T = {
|
|||
}
|
||||
}
|
||||
|
||||
let toFloat = (toPointSet: toPointSetFn, fnName, t: genericDist) => {
|
||||
let toFloat = (toPointSet: toPointSetFn, fnName, t: genericDist): result<float, error> => {
|
||||
switch t {
|
||||
| #Symbolic(r) if Belt.Result.isOk(SymbolicDist.T.operate(fnName, r)) =>
|
||||
switch SymbolicDist.T.operate(fnName, r) {
|
||||
|
@ -104,7 +99,7 @@ module T = {
|
|||
kernelWidth: None,
|
||||
}
|
||||
|
||||
let toPointSet = (xyPointLength, t: t) => {
|
||||
let toPointSet = (xyPointLength, t: t): result<PointSetTypes.pointSetDist, error> => {
|
||||
switch t {
|
||||
| #PointSet(pointSet) => Ok(pointSet)
|
||||
| #Symbolic(r) => Ok(SymbolicDist.T.toPointSetDist(xyPointLength, r))
|
||||
|
@ -122,16 +117,82 @@ module T = {
|
|||
}
|
||||
}
|
||||
|
||||
let algebraicCombination = (operation, sampleCount, dist1: t, dist2: t) => {
|
||||
let dist1 = sampleN(sampleCount, dist1)
|
||||
let dist2 = sampleN(sampleCount, dist2)
|
||||
let samples = E.R.merge(dist1, dist2) |> E.R.fmap(((d1, d2)) => {
|
||||
Belt.Array.zip(d1, d2) |> E.A.fmap(((a, b)) => Operation.Algebraic.toFn(operation, a, b))
|
||||
})
|
||||
samples |> E.R.fmap(r => #SampleSet(r))
|
||||
module AlgebraicCombination = {
|
||||
let tryAnalyticalSimplification = (operation: OperationType.combination, t1: t, t2: t): option<
|
||||
result<SymbolicDistTypes.symbolicDist, string>,
|
||||
> =>
|
||||
switch (operation, t1, t2) {
|
||||
| (operation, #Symbolic(d1), #Symbolic(d2)) =>
|
||||
switch SymbolicDist.T.tryAnalyticalSimplification(d1, d2, operation) {
|
||||
| #AnalyticalSolution(symbolicDist) => Some(Ok(symbolicDist))
|
||||
| #Error(er) => Some(Error(er))
|
||||
| #NoSolution => None
|
||||
}
|
||||
| _ => None
|
||||
}
|
||||
|
||||
let runConvolution = (
|
||||
toPointSet: toPointSetFn,
|
||||
operation: OperationType.combination,
|
||||
t1: t,
|
||||
t2: t,
|
||||
) =>
|
||||
E.R.merge(toPointSet(t1), toPointSet(t2)) |> E.R.fmap(((a, b)) =>
|
||||
PointSetDist.combineAlgebraically(operation, a, b)
|
||||
)
|
||||
|
||||
let runMonteCarlo = (
|
||||
toSampleSet: toSampleSetFn,
|
||||
operation: OperationType.combination,
|
||||
t1: t,
|
||||
t2: t,
|
||||
) => {
|
||||
E.R.merge(toSampleSet(t1), toSampleSet(t2)) |> E.R.fmap(((a, b)) => {
|
||||
Belt.Array.zip(a, b) |> E.A.fmap(((a, b)) => Operation.Algebraic.toFn(operation, a, b))
|
||||
})
|
||||
}
|
||||
|
||||
//I'm (Ozzie) really just guessing here, very little idea what's best
|
||||
let expectedConvolutionCost: t => int = x =>
|
||||
switch x {
|
||||
| #Symbolic(#Float(_)) => 1
|
||||
| #Symbolic(_) => 1000
|
||||
| #PointSet(Discrete(m)) => m.xyShape |> XYShape.T.length
|
||||
| #PointSet(Mixed(_)) => 1000
|
||||
| #PointSet(Continuous(_)) => 1000
|
||||
| _ => 1000
|
||||
}
|
||||
|
||||
let chooseConvolutionOrMonteCarlo = (t1: t, t2: t) =>
|
||||
expectedConvolutionCost(t1) * expectedConvolutionCost(t2) > 10000
|
||||
? #CalculateWithMonteCarlo
|
||||
: #CalculateWithConvolution
|
||||
|
||||
let run = (
|
||||
toPointSet: toPointSetFn,
|
||||
toSampleSet: toSampleSetFn,
|
||||
algebraicOp,
|
||||
t1: t,
|
||||
t2: t,
|
||||
): result<t, error> => {
|
||||
switch tryAnalyticalSimplification(algebraicOp, t1, t2) {
|
||||
| Some(Ok(symbolicDist)) => Ok(#Symbolic(symbolicDist))
|
||||
| Some(Error(e)) => Error(Other(e))
|
||||
| None =>
|
||||
switch chooseConvolutionOrMonteCarlo(t1, t2) {
|
||||
| #CalculateWithMonteCarlo =>
|
||||
runMonteCarlo(toSampleSet, algebraicOp, t1, t2) |> E.R.fmap(r => #SampleSet(r))
|
||||
| #CalculateWithConvolution =>
|
||||
runConvolution(toPointSet, algebraicOp, t1, t2) |> E.R.fmap(r => #PointSet(r))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let pointwiseCombination = (toPointSet: toPointSetFn, operation, t1: t, t2: t) => {
|
||||
let pointwiseCombination = (toPointSet: toPointSetFn, operation, t1: t, t2: t): result<
|
||||
t,
|
||||
error,
|
||||
> => {
|
||||
E.R.merge(toPointSet(t1), toPointSet(t2))
|
||||
|> E.R.fmap(((t1, t2)) =>
|
||||
PointSetDist.combinePointwise(OperationType.combinationToFn(operation), t1, t2)
|
||||
|
@ -144,11 +205,12 @@ module T = {
|
|||
operation: OperationType.combination,
|
||||
t: t,
|
||||
f: float,
|
||||
) => {
|
||||
): result<t, error> => {
|
||||
switch operation {
|
||||
| #Add | #Subtract => Error(DistributionVerticalShiftIsInvalid)
|
||||
| (#Multiply | #Divide | #Exponentiate | #Log) as operation =>
|
||||
toPointSet(t) |> E.R.fmap(t => {
|
||||
//TODO: Move to PointSet codebase
|
||||
let fn = (secondary, main) => Operation.Scale.toFn(operation, main, secondary)
|
||||
let integralSumCacheFn = Operation.Scale.toIntegralSumCacheFn(operation)
|
||||
let integralCacheFn = Operation.Scale.toIntegralCacheFn(operation)
|
||||
|
@ -159,7 +221,7 @@ module T = {
|
|||
t,
|
||||
)
|
||||
})
|
||||
}
|
||||
} |> E.R.fmap(r => #PointSet(r))
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -188,10 +250,10 @@ module OmniRunner = {
|
|||
| Error(e) => #Error(e)
|
||||
}
|
||||
|
||||
let rec applyFnInternal = (wrapped: wrapped, fnName: operation): outputType => {
|
||||
let rec run = (wrapped: wrapped, fnName: operation): outputType => {
|
||||
let (value, {sampleCount, xyPointLength} as extra) = wrapped
|
||||
let reCall = (~value=value, ~extra=extra, ~fnName=fnName, ()) => {
|
||||
applyFnInternal((value, extra), fnName)
|
||||
run((value, extra), fnName)
|
||||
}
|
||||
let toPointSet = r => {
|
||||
switch reCall(~value=r, ~fnName=#toDist(#toPointSet), ()) {
|
||||
|
@ -200,8 +262,14 @@ module OmniRunner = {
|
|||
| _ => Error(Other("Impossible error"))
|
||||
}
|
||||
}
|
||||
let toPointSetAndReCall = v => toPointSet(v) |> E.R.fmap(r => reCall(~value=#PointSet(r), ()))
|
||||
let newVal: outputType = switch (fnName, value) {
|
||||
let toSampleSet = r => {
|
||||
switch reCall(~value=r, ~fnName=#toDist(#toSampleSet(sampleCount)), ()) {
|
||||
| #Dist(#SampleSet(p)) => Ok(p)
|
||||
| #Error(r) => Error(r)
|
||||
| _ => Error(Other("Impossible error"))
|
||||
}
|
||||
}
|
||||
switch (fnName, value) {
|
||||
// | (#toFloat(n), v) => toFloat(toPointSet, v, n)
|
||||
| (#toFloat(fnName), _) =>
|
||||
T.toFloat(toPointSet, fnName, value) |> E.R.fmap(r => #Float(r)) |> fromResult
|
||||
|
@ -214,17 +282,16 @@ module OmniRunner = {
|
|||
value |> T.sampleN(n) |> E.R.fmap(r => #Dist(#SampleSet(r))) |> fromResult
|
||||
| (#toDistCombination(#Algebraic, _, #Float(_)), _) => #Error(NotYetImplemented)
|
||||
| (#toDistCombination(#Algebraic, operation, #Dist(p2)), p1) =>
|
||||
T.algebraicCombination(operation, sampleCount, p1, p2)
|
||||
T.AlgebraicCombination.run(toPointSet, toSampleSet, operation, p1, p2)
|
||||
|> E.R.fmap(r => #Dist(r))
|
||||
|> fromResult
|
||||
| (#toDistCombination(#Pointwise, operation, #Dist(p2)), p1) =>
|
||||
T.pointwiseCombination(toPointSet, operation, p1, p2) |> E.R.fmap(r => #Dist(r)) |> fromResult
|
||||
| (#toDistCombination(#Pointwise, operation, #Float(f)), _) =>
|
||||
T.pointwiseCombinationFloat(toPointSet, operation, value, f)
|
||||
|> E.R.fmap(r => #Dist(#PointSet(r)))
|
||||
|> E.R.fmap(r => #Dist(r))
|
||||
|> fromResult
|
||||
}
|
||||
newVal
|
||||
}
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user