parent
8aea739fd0
commit
c4b6a8d097
|
@ -163,7 +163,7 @@ export const SquiggleChart: React.FC<SquiggleChartProps> = (props) => {
|
|||
// We are looking at a function. In this case, we draw a Percentiles chart
|
||||
let start = props.diagramStart ? props.diagramStart : 0;
|
||||
let stop = props.diagramStop ? props.diagramStop : 10;
|
||||
let count = props.diagramCount ? props.diagramCount : 0.1;
|
||||
let count = props.diagramCount ? props.diagramCount : 100;
|
||||
let step = (stop - start) / count;
|
||||
let data = _.range(start, stop, step).map((x) => {
|
||||
if (chartResult.NAME == "Function") {
|
||||
|
@ -192,10 +192,10 @@ export const SquiggleChart: React.FC<SquiggleChartProps> = (props) => {
|
|||
p99: percentiles[12],
|
||||
};
|
||||
}
|
||||
return null;
|
||||
}
|
||||
return 0;
|
||||
});
|
||||
return <SquigglePercentilesChart data={{ facet: data }} />;
|
||||
return <SquigglePercentilesChart data={{ facet: data.filter(x => x !== null) }} />;
|
||||
}
|
||||
});
|
||||
return <>{chartResults}</>;
|
||||
|
|
|
@ -110,6 +110,7 @@ module Internals = {
|
|||
inputs : Inputs.inputs,
|
||||
env : ASTTypes.environment) => {
|
||||
(input : float) => {
|
||||
Js.log2("Environment", inputs);
|
||||
let foo: Inputs.inputs = {...inputs, environment: env};
|
||||
evaluateFunction(
|
||||
foo,
|
||||
|
|
|
@ -22,7 +22,7 @@ let makeSymbolicFromTwoFloats = (name, fn) =>
|
|||
~inputTypes=[#Float, #Float],
|
||||
~run=x =>
|
||||
switch x {
|
||||
| [#Float(a), #Float(b)] => Ok(#SymbolicDist(fn(a, b)))
|
||||
| [#Float(a), #Float(b)] => fn(a, b) |> E.R.fmap(r => (#SymbolicDist(r)))
|
||||
| e => wrongInputsError(e)
|
||||
},
|
||||
(),
|
||||
|
@ -35,7 +35,7 @@ let makeSymbolicFromOneFloat = (name, fn) =>
|
|||
~inputTypes=[#Float],
|
||||
~run=x =>
|
||||
switch x {
|
||||
| [#Float(a)] => Ok(#SymbolicDist(fn(a)))
|
||||
| [#Float(a)] => fn(a) |> E.R.fmap(r => #SymbolicDist(r))
|
||||
| e => wrongInputsError(e)
|
||||
},
|
||||
(),
|
||||
|
|
|
@ -2,7 +2,10 @@ open SymbolicDistTypes
|
|||
|
||||
module Normal = {
|
||||
type t = normal
|
||||
let make = (mean, stdev): symbolicDist => #Normal({mean: mean, stdev: stdev})
|
||||
let make = (mean: float, stdev: float): result<symbolicDist,string> =>
|
||||
stdev > 0.0
|
||||
? Ok(#Normal({mean: mean, stdev: stdev}))
|
||||
: Error("Standard deviation of normal distribution must be larger than 0")
|
||||
let pdf = (x, t: t) => Jstat.Normal.pdf(x, t.mean, t.stdev)
|
||||
let cdf = (x, t: t) => Jstat.Normal.cdf(x, t.mean, t.stdev)
|
||||
|
||||
|
@ -45,10 +48,12 @@ module Normal = {
|
|||
|
||||
module Exponential = {
|
||||
type t = exponential
|
||||
let make = (rate: float): symbolicDist =>
|
||||
#Exponential({
|
||||
let make = (rate: float): result<symbolicDist,string> =>
|
||||
rate > 0.0
|
||||
? Ok(#Exponential({
|
||||
rate: rate,
|
||||
})
|
||||
}))
|
||||
: Error("Exponential distributions mean must be larger than 0")
|
||||
let pdf = (x, t: t) => Jstat.Exponential.pdf(x, t.rate)
|
||||
let cdf = (x, t: t) => Jstat.Exponential.cdf(x, t.rate)
|
||||
let inv = (p, t: t) => Jstat.Exponential.inv(p, t.rate)
|
||||
|
@ -84,7 +89,10 @@ module Triangular = {
|
|||
|
||||
module Beta = {
|
||||
type t = beta
|
||||
let make = (alpha, beta) => #Beta({alpha: alpha, beta: beta})
|
||||
let make = (alpha, beta) =>
|
||||
alpha > 0.0 && beta > 0.0
|
||||
? Ok(#Beta({alpha: alpha, beta: beta}))
|
||||
: Error("Beta distribution parameters must be positive")
|
||||
let pdf = (x, t: t) => Jstat.Beta.pdf(x, t.alpha, t.beta)
|
||||
let cdf = (x, t: t) => Jstat.Beta.cdf(x, t.alpha, t.beta)
|
||||
let inv = (p, t: t) => Jstat.Beta.inv(p, t.alpha, t.beta)
|
||||
|
@ -95,7 +103,10 @@ module Beta = {
|
|||
|
||||
module Lognormal = {
|
||||
type t = lognormal
|
||||
let make = (mu, sigma) => #Lognormal({mu: mu, sigma: sigma})
|
||||
let make = (mu, sigma) =>
|
||||
sigma > 0.0
|
||||
? Ok(#Lognormal({mu: mu, sigma: sigma}))
|
||||
: Error("Lognormal standard deviation must be larger than 0")
|
||||
let pdf = (x, t: t) => Jstat.Lognormal.pdf(x, t.mu, t.sigma)
|
||||
let cdf = (x, t: t) => Jstat.Lognormal.cdf(x, t.mu, t.sigma)
|
||||
let inv = (p, t: t) => Jstat.Lognormal.inv(p, t.mu, t.sigma)
|
||||
|
@ -110,11 +121,16 @@ module Lognormal = {
|
|||
#Lognormal({mu: mu, sigma: sigma})
|
||||
}
|
||||
let fromMeanAndStdev = (mean, stdev) => {
|
||||
if stdev > 0.0 {
|
||||
let variance = Js.Math.pow_float(~base=stdev, ~exp=2.0)
|
||||
let meanSquared = Js.Math.pow_float(~base=mean, ~exp=2.0)
|
||||
let mu = Js.Math.log(mean) -. 0.5 *. Js.Math.log(variance /. meanSquared +. 1.0)
|
||||
let sigma = Js.Math.pow_float(~base=Js.Math.log(variance /. meanSquared +. 1.0), ~exp=0.5)
|
||||
#Lognormal({mu: mu, sigma: sigma})
|
||||
Ok(#Lognormal({mu: mu, sigma: sigma}))
|
||||
}
|
||||
else {
|
||||
Error("Lognormal standard deviation must be larger than 0")
|
||||
}
|
||||
}
|
||||
|
||||
let multiply = (l1, l2) => {
|
||||
|
@ -137,7 +153,11 @@ module Lognormal = {
|
|||
|
||||
module Uniform = {
|
||||
type t = uniform
|
||||
let make = (low, high) => #Uniform({low: low, high: high})
|
||||
let make = (low, high) =>
|
||||
high > low
|
||||
? Ok(#Uniform({low: low, high: high}))
|
||||
: Error("High must be larger than low")
|
||||
|
||||
let pdf = (x, t: t) => Jstat.Uniform.pdf(x, t.low, t.high)
|
||||
let cdf = (x, t: t) => Jstat.Uniform.cdf(x, t.low, t.high)
|
||||
let inv = (p, t: t) => Jstat.Uniform.inv(p, t.low, t.high)
|
||||
|
|
Loading…
Reference in New Issue
Block a user