Refactored sci.res into multiple files

This commit is contained in:
Ozzie Gooen 2022-03-27 14:22:26 -04:00
parent 2ec1bfd068
commit c2ac9614d0
4 changed files with 354 additions and 376 deletions

View File

@ -0,0 +1,213 @@
//TODO: multimodal, add interface, split up a little bit, test somehow, track performance, refactor sampleSet, refactor ASTEvaluator.res.
type genericDist = GenericDist_Types.genericDist
type error = GenericDist_Types.error
type toPointSetFn = genericDist => result<PointSetTypes.pointSetDist, error>
type toSampleSetFn = genericDist => result<array<float>, error>
type t = genericDist
let sampleN = (n, t: t) =>
switch t {
| #PointSet(r) => Ok(PointSetDist.sampleNRendered(n, r))
| #Symbolic(r) => Ok(SymbolicDist.T.sampleN(n, r))
| #SampleSet(_) => Error(GenericDist_Types.NotYetImplemented)
}
let toString = (t: t) =>
switch t {
| #PointSet(_) => "Point Set Distribution"
| #Symbolic(r) => SymbolicDist.T.toString(r)
| #SampleSet(_) => "Sample Set Distribution"
}
let normalize = (t: t) =>
switch t {
| #PointSet(r) => #PointSet(PointSetDist.T.normalize(r))
| #Symbolic(_) => t
| #SampleSet(_) => t
}
let operationToFloat = (toPointSet: toPointSetFn, fnName, t: genericDist): result<float, error> => {
let symbolicSolution = switch t {
| #Symbolic(r) =>
switch SymbolicDist.T.operate(fnName, r) {
| Ok(f) => Some(f)
| _ => None
}
| _ => None
}
switch symbolicSolution {
| Some(r) => Ok(r)
| None => toPointSet(t) |> E.R.fmap(PointSetDist.operate(fnName))
}
}
//TODO: Refactor this bit.
let defaultSamplingInputs: SamplingInputs.samplingInputs = {
sampleCount: 10000,
outputXYPoints: 10000,
pointSetDistLength: 1000,
kernelWidth: None,
}
let toPointSet = (xyPointLength, t: t): result<PointSetTypes.pointSetDist, error> => {
switch t {
| #PointSet(pointSet) => Ok(pointSet)
| #Symbolic(r) => Ok(SymbolicDist.T.toPointSetDist(xyPointLength, r))
| #SampleSet(r) => {
let response = SampleSet.toPointSetDist(
~samples=r,
~samplingInputs=defaultSamplingInputs,
(),
).pointSetDist
switch response {
| Some(r) => Ok(r)
| None => Error(Other("Converting sampleSet to pointSet failed"))
}
}
}
}
module Truncate = {
let trySymbolicSimplification = (leftCutoff, rightCutoff, t): option<t> =>
switch (leftCutoff, rightCutoff, t) {
| (None, None, _) => None
| (lc, rc, #Symbolic(#Uniform(u))) if lc < rc =>
Some(#Symbolic(#Uniform(SymbolicDist.Uniform.truncate(lc, rc, u))))
| _ => None
}
let run = (
toPointSet: toPointSetFn,
leftCutoff: option<float>,
rightCutoff: option<float>,
t: t,
): result<t, error> => {
let doesNotNeedCutoff = E.O.isNone(leftCutoff) && E.O.isNone(rightCutoff)
if doesNotNeedCutoff {
Ok(t)
} else {
switch trySymbolicSimplification(leftCutoff, rightCutoff, t) {
| Some(r) => Ok(r)
| None =>
toPointSet(t) |> E.R.fmap(t =>
#PointSet(PointSetDist.T.truncate(leftCutoff, rightCutoff, t))
)
}
}
}
}
/* Given two random variables A and B, this returns the distribution
of a new variable that is the result of the operation on A and B.
For instance, normal(0, 1) + normal(1, 1) -> normal(1, 2).
In general, this is implemented via convolution. */
module AlgebraicCombination = {
let tryAnalyticalSimplification = (
operation: GenericDist_Types.Operation.arithmeticOperation,
t1: t,
t2: t,
): option<result<SymbolicDistTypes.symbolicDist, string>> =>
switch (operation, t1, t2) {
| (operation, #Symbolic(d1), #Symbolic(d2)) =>
switch SymbolicDist.T.tryAnalyticalSimplification(d1, d2, operation) {
| #AnalyticalSolution(symbolicDist) => Some(Ok(symbolicDist))
| #Error(er) => Some(Error(er))
| #NoSolution => None
}
| _ => None
}
let runConvolution = (
toPointSet: toPointSetFn,
operation: GenericDist_Types.Operation.arithmeticOperation,
t1: t,
t2: t,
) =>
E.R.merge(toPointSet(t1), toPointSet(t2)) |> E.R.fmap(((a, b)) =>
PointSetDist.combineAlgebraically(operation, a, b)
)
let runMonteCarlo = (
toSampleSet: toSampleSetFn,
operation: GenericDist_Types.Operation.arithmeticOperation,
t1: t,
t2: t,
) => {
E.R.merge(toSampleSet(t1), toSampleSet(t2)) |> E.R.fmap(((a, b)) => {
Belt.Array.zip(a, b) |> E.A.fmap(((a, b)) => Operation.Algebraic.toFn(operation, a, b))
})
}
//I'm (Ozzie) really just guessing here, very little idea what's best
let expectedConvolutionCost: t => int = x =>
switch x {
| #Symbolic(#Float(_)) => 1
| #Symbolic(_) => 1000
| #PointSet(Discrete(m)) => m.xyShape |> XYShape.T.length
| #PointSet(Mixed(_)) => 1000
| #PointSet(Continuous(_)) => 1000
| _ => 1000
}
let chooseConvolutionOrMonteCarlo = (t2: t, t1: t) =>
expectedConvolutionCost(t1) * expectedConvolutionCost(t2) > 10000
? #CalculateWithMonteCarlo
: #CalculateWithConvolution
let run = (
toPointSet: toPointSetFn,
toSampleSet: toSampleSetFn,
algebraicOp,
t1: t,
t2: t,
): result<t, error> => {
switch tryAnalyticalSimplification(algebraicOp, t1, t2) {
| Some(Ok(symbolicDist)) => Ok(#Symbolic(symbolicDist))
| Some(Error(e)) => Error(Other(e))
| None =>
switch chooseConvolutionOrMonteCarlo(t1, t2) {
| #CalculateWithMonteCarlo =>
runMonteCarlo(toSampleSet, algebraicOp, t1, t2) |> E.R.fmap(r => #SampleSet(r))
| #CalculateWithConvolution =>
runConvolution(toPointSet, algebraicOp, t1, t2) |> E.R.fmap(r => #PointSet(r))
}
}
}
}
//TODO: Add faster pointwiseCombine fn
let pointwiseCombination = (toPointSet: toPointSetFn, operation, t2: t, t1: t): result<
t,
error,
> => {
E.R.merge(toPointSet(t1), toPointSet(t2))
|> E.R.fmap(((t1, t2)) =>
PointSetDist.combinePointwise(GenericDist_Types.Operation.arithmeticToFn(operation), t1, t2)
)
|> E.R.fmap(r => #PointSet(r))
}
let pointwiseCombinationFloat = (
toPointSet: toPointSetFn,
operation: GenericDist_Types.Operation.arithmeticOperation,
f: float,
t: t,
): result<t, error> => {
switch operation {
| #Add | #Subtract => Error(GenericDist_Types.DistributionVerticalShiftIsInvalid)
| (#Multiply | #Divide | #Exponentiate | #Log) as operation =>
toPointSet(t) |> E.R.fmap(t => {
//TODO: Move to PointSet codebase
let fn = (secondary, main) => Operation.Scale.toFn(operation, main, secondary)
let integralSumCacheFn = Operation.Scale.toIntegralSumCacheFn(operation)
let integralCacheFn = Operation.Scale.toIntegralCacheFn(operation)
PointSetDist.T.mapY(
~integralSumCacheFn=integralSumCacheFn(f),
~integralCacheFn=integralCacheFn(f),
~fn=fn(f),
t,
)
})
} |> E.R.fmap(r => #PointSet(r))
}

View File

@ -0,0 +1,78 @@
type operation = GenericDist_Types.Operation.t
type genericDist = GenericDist_Types.genericDist;
type error = GenericDist_Types.error;
type params = {
sampleCount: int,
xyPointLength: int,
}
let genericParams = {
sampleCount: 1000,
xyPointLength: 1000,
}
type wrapped = (genericDist, params)
let wrapWithParams = (g: genericDist, f: params): wrapped => (g, f)
type outputType = [
| #Dist(genericDist)
| #Error(error)
| #Float(float)
]
let fromResult = (r: result<outputType, error>): outputType =>
switch r {
| Ok(o) => o
| Error(e) => #Error(e)
}
let rec run = (wrapped: wrapped, fnName: operation): outputType => {
let (value, {sampleCount, xyPointLength} as extra) = wrapped
let reCall = (~value=value, ~extra=extra, ~fnName=fnName, ()) => {
run((value, extra), fnName)
}
let toPointSet = r => {
switch reCall(~value=r, ~fnName=#toDist(#toPointSet), ()) {
| #Dist(#PointSet(p)) => Ok(p)
| #Error(r) => Error(r)
| _ => Error(ImpossiblePath)
}
}
let toSampleSet = r => {
switch reCall(~value=r, ~fnName=#toDist(#toSampleSet(sampleCount)), ()) {
| #Dist(#SampleSet(p)) => Ok(p)
| #Error(r) => Error(r)
| _ => Error(ImpossiblePath)
}
}
switch fnName {
| #toFloat(fnName) =>
GenericDist.operationToFloat(toPointSet, fnName, value) |> E.R.fmap(r => #Float(r)) |> fromResult
| #toString =>
#Error(GenericDist_Types.NotYetImplemented)
| #toDist(#normalize) => value |> GenericDist.normalize |> (r => #Dist(r))
| #toDist(#truncate(left, right)) =>
value |> GenericDist.Truncate.run(toPointSet, left, right) |> E.R.fmap(r => #Dist(r)) |> fromResult
| #toDist(#toPointSet) =>
value |> GenericDist.toPointSet(xyPointLength) |> E.R.fmap(r => #Dist(#PointSet(r))) |> fromResult
| #toDist(#toSampleSet(n)) =>
value |> GenericDist.sampleN(n) |> E.R.fmap(r => #Dist(#SampleSet(r))) |> fromResult
| #toDistCombination(#Algebraic, _, #Float(_)) => #Error(NotYetImplemented)
| #toDistCombination(#Algebraic, operation, #Dist(value2)) =>
value
|> GenericDist.AlgebraicCombination.run(toPointSet, toSampleSet, operation, value2)
|> E.R.fmap(r => #Dist(r))
|> fromResult
| #toDistCombination(#Pointwise, operation, #Dist(value2)) =>
value
|> GenericDist.pointwiseCombination(toPointSet, operation, value2)
|> E.R.fmap(r => #Dist(r))
|> fromResult
| #toDistCombination(#Pointwise, operation, #Float(f)) =>
value
|> GenericDist.pointwiseCombinationFloat(toPointSet, operation, f)
|> E.R.fmap(r => #Dist(r))
|> fromResult
}
}

View File

@ -0,0 +1,63 @@
type genericDist = [
| #PointSet(PointSetTypes.pointSetDist)
| #SampleSet(array<float>)
| #Symbolic(SymbolicDistTypes.symbolicDist)
]
type error =
| NotYetImplemented
| ImpossiblePath
| DistributionVerticalShiftIsInvalid
| Other(string)
module Operation = {
type direction = [
| #Algebraic
| #Pointwise
]
type arithmeticOperation = [
| #Add
| #Multiply
| #Subtract
| #Divide
| #Exponentiate
| #Log
]
let arithmeticToFn = (arithmetic: arithmeticOperation) =>
switch arithmetic {
| #Add => \"+."
| #Multiply => \"*."
| #Subtract => \"-."
| #Exponentiate => \"**"
| #Divide => \"/."
| #Log => (a, b) => log(a) /. log(b)
}
type toFloat = [
| #Cdf(float)
| #Inv(float)
| #Mean
| #Pdf(float)
| #Sample
]
type toDist = [
| #normalize
| #toPointSet
| #toSampleSet(int)
| #truncate(option<float>, option<float>)
]
type toFloatArray = [
| #Sample(int)
]
type t = [
| #toFloat(toFloat)
| #toDist(toDist)
| #toDistCombination(direction, arithmeticOperation, [#Dist(genericDist) | #Float(float)])
| #toString
]
}

View File

@ -1,376 +0,0 @@
//TODO: multimodal, add interface, split up a little bit, test somehow, track performance, refactor sampleSet, refactor ASTEvaluator.res.
type error =
| NeedsPointSetConversion
| InputsNeedPointSetConversion
| NotYetImplemented
| ImpossiblePath
| DistributionVerticalShiftIsInvalid
| Other(string)
type genericDist = [
| #PointSet(PointSetTypes.pointSetDist)
| #SampleSet(array<float>)
| #Symbolic(SymbolicDistTypes.symbolicDist)
]
module OperationType = {
type direction = [
| #Algebraic
| #Pointwise
]
type arithmeticOperation = [
| #Add
| #Multiply
| #Subtract
| #Divide
| #Exponentiate
| #Log
]
let arithmeticToFn = (arithmetic: arithmeticOperation) =>
switch arithmetic {
| #Add => \"+."
| #Multiply => \"*."
| #Subtract => \"-."
| #Exponentiate => \"**"
| #Divide => \"/."
| #Log => (a, b) => log(a) /. log(b)
}
type toFloat = [
| #Cdf(float)
| #Inv(float)
| #Mean
| #Pdf(float)
| #Sample
]
type toDist = [
| #normalize
| #toPointSet
| #toSampleSet(int)
| #truncate(option<float>, option<float>)
]
type toFloatArray = [
| #Sample(int)
]
type t = [
| #toFloat(toFloat)
| #toDist(toDist)
| #toDistCombination(direction, arithmeticOperation, [#Dist(genericDist) | #Float(float)])
]
}
type operation = OperationType.t
module T = {
type t = genericDist
type toPointSetFn = genericDist => result<PointSetTypes.pointSetDist, error>
type toSampleSetFn = genericDist => result<array<float>, error>
let sampleN = (n, t: t) => {
switch t {
| #PointSet(r) => Ok(PointSetDist.sampleNRendered(n, r))
| #Symbolic(r) => Ok(SymbolicDist.T.sampleN(n, r))
| #SampleSet(_) => Error(NotYetImplemented)
}
}
let normalize = (t: t) => {
switch t {
| #PointSet(r) => #PointSet(PointSetDist.T.normalize(r))
| #Symbolic(_) => t
| #SampleSet(_) => t
}
}
let toFloat = (toPointSet: toPointSetFn, fnName, t: genericDist): result<float, error> => {
switch t {
| #Symbolic(r) if Belt.Result.isOk(SymbolicDist.T.operate(fnName, r)) =>
switch SymbolicDist.T.operate(fnName, r) {
| Ok(float) => Ok(float)
| Error(_) => Error(ImpossiblePath)
}
| _ =>
switch toPointSet(t) {
| Ok(r) => Ok(PointSetDist.operate(fnName, r))
| Error(r) => Error(r)
}
}
}
//TODO: Refactor this bit.
let defaultSamplingInputs: SamplingInputs.samplingInputs = {
sampleCount: 10000,
outputXYPoints: 10000,
pointSetDistLength: 1000,
kernelWidth: None,
}
let toPointSet = (xyPointLength, t: t): result<PointSetTypes.pointSetDist, error> => {
switch t {
| #PointSet(pointSet) => Ok(pointSet)
| #Symbolic(r) => Ok(SymbolicDist.T.toPointSetDist(xyPointLength, r))
| #SampleSet(r) => {
let response = SampleSet.toPointSetDist(
~samples=r,
~samplingInputs=defaultSamplingInputs,
(),
).pointSetDist
switch response {
| Some(r) => Ok(r)
| None => Error(Other("Converting sampleSet to pointSet failed"))
}
}
}
}
module Truncate = {
let trySymbolicSimplification = (leftCutoff, rightCutoff, t): option<t> =>
switch (leftCutoff, rightCutoff, t) {
| (None, None, _) => None
| (lc, rc, #Symbolic(#Uniform(u))) if lc < rc =>
Some(#Symbolic(#Uniform(SymbolicDist.Uniform.truncate(lc, rc, u))))
| _ => None
}
let run = (
toPointSet: toPointSetFn,
leftCutoff: option<float>,
rightCutoff: option<float>,
t: t,
): result<t, error> => {
let doesNotNeedCutoff = E.O.isNone(leftCutoff) && E.O.isNone(rightCutoff)
if doesNotNeedCutoff {
Ok(t)
} else {
switch trySymbolicSimplification(leftCutoff, rightCutoff, t) {
| Some(r) => Ok(r)
| None =>
toPointSet(t) |> E.R.fmap(t =>
#PointSet(PointSetDist.T.truncate(leftCutoff, rightCutoff, t))
)
}
}
}
}
/* Given two random variables A and B, this returns the distribution
of a new variable that is the result of the operation on A and B.
For instance, normal(0, 1) + normal(1, 1) -> normal(1, 2).
In general, this is implemented via convolution. */
module AlgebraicCombination = {
let tryAnalyticalSimplification = (
operation: OperationType.arithmeticOperation,
t1: t,
t2: t,
): option<result<SymbolicDistTypes.symbolicDist, string>> =>
switch (operation, t1, t2) {
| (operation, #Symbolic(d1), #Symbolic(d2)) =>
switch SymbolicDist.T.tryAnalyticalSimplification(d1, d2, operation) {
| #AnalyticalSolution(symbolicDist) => Some(Ok(symbolicDist))
| #Error(er) => Some(Error(er))
| #NoSolution => None
}
| _ => None
}
let runConvolution = (
toPointSet: toPointSetFn,
operation: OperationType.arithmeticOperation,
t1: t,
t2: t,
) =>
E.R.merge(toPointSet(t1), toPointSet(t2)) |> E.R.fmap(((a, b)) =>
PointSetDist.combineAlgebraically(operation, a, b)
)
let runMonteCarlo = (
toSampleSet: toSampleSetFn,
operation: OperationType.arithmeticOperation,
t1: t,
t2: t,
) => {
E.R.merge(toSampleSet(t1), toSampleSet(t2)) |> E.R.fmap(((a, b)) => {
Belt.Array.zip(a, b) |> E.A.fmap(((a, b)) => Operation.Algebraic.toFn(operation, a, b))
})
}
//I'm (Ozzie) really just guessing here, very little idea what's best
let expectedConvolutionCost: t => int = x =>
switch x {
| #Symbolic(#Float(_)) => 1
| #Symbolic(_) => 1000
| #PointSet(Discrete(m)) => m.xyShape |> XYShape.T.length
| #PointSet(Mixed(_)) => 1000
| #PointSet(Continuous(_)) => 1000
| _ => 1000
}
let chooseConvolutionOrMonteCarlo = (t2: t, t1: t) =>
expectedConvolutionCost(t1) * expectedConvolutionCost(t2) > 10000
? #CalculateWithMonteCarlo
: #CalculateWithConvolution
let run = (
toPointSet: toPointSetFn,
toSampleSet: toSampleSetFn,
algebraicOp,
t1: t,
t2: t,
): result<t, error> => {
switch tryAnalyticalSimplification(algebraicOp, t1, t2) {
| Some(Ok(symbolicDist)) => Ok(#Symbolic(symbolicDist))
| Some(Error(e)) => Error(Other(e))
| None =>
switch chooseConvolutionOrMonteCarlo(t1, t2) {
| #CalculateWithMonteCarlo =>
runMonteCarlo(toSampleSet, algebraicOp, t1, t2) |> E.R.fmap(r => #SampleSet(r))
| #CalculateWithConvolution =>
runConvolution(toPointSet, algebraicOp, t1, t2) |> E.R.fmap(r => #PointSet(r))
}
}
}
}
//TODO: Add faster pointwiseCombine fn
let pointwiseCombination = (toPointSet: toPointSetFn, operation, t2: t, t1: t): result<
t,
error,
> => {
E.R.merge(toPointSet(t1), toPointSet(t2))
|> E.R.fmap(((t1, t2)) =>
PointSetDist.combinePointwise(OperationType.arithmeticToFn(operation), t1, t2)
)
|> E.R.fmap(r => #PointSet(r))
}
let pointwiseCombinationFloat = (
toPointSet: toPointSetFn,
operation: OperationType.arithmeticOperation,
f: float,
t: t,
): result<t, error> => {
switch operation {
| #Add | #Subtract => Error(DistributionVerticalShiftIsInvalid)
| (#Multiply | #Divide | #Exponentiate | #Log) as operation =>
toPointSet(t) |> E.R.fmap(t => {
//TODO: Move to PointSet codebase
let fn = (secondary, main) => Operation.Scale.toFn(operation, main, secondary)
let integralSumCacheFn = Operation.Scale.toIntegralSumCacheFn(operation)
let integralCacheFn = Operation.Scale.toIntegralCacheFn(operation)
PointSetDist.T.mapY(
~integralSumCacheFn=integralSumCacheFn(f),
~integralCacheFn=integralCacheFn(f),
~fn=fn(f),
t,
)
})
} |> E.R.fmap(r => #PointSet(r))
}
}
module OmniRunner = {
type params = {
sampleCount: int,
xyPointLength: int,
}
let genericParams = {
sampleCount: 1000,
xyPointLength: 1000,
}
type wrapped = (genericDist, params)
let wrapWithParams = (g: genericDist, f: params): wrapped => (g, f)
type outputType = [
| #Dist(genericDist)
| #Error(error)
| #Float(float)
]
let fromResult = (r: result<outputType, error>): outputType =>
switch r {
| Ok(o) => o
| Error(e) => #Error(e)
}
let rec run = (wrapped: wrapped, fnName: operation): outputType => {
let (value, {sampleCount, xyPointLength} as extra) = wrapped
let reCall = (~value=value, ~extra=extra, ~fnName=fnName, ()) => {
run((value, extra), fnName)
}
let toPointSet = r => {
switch reCall(~value=r, ~fnName=#toDist(#toPointSet), ()) {
| #Dist(#PointSet(p)) => Ok(p)
| #Error(r) => Error(r)
| _ => Error(ImpossiblePath)
}
}
let toSampleSet = r => {
switch reCall(~value=r, ~fnName=#toDist(#toSampleSet(sampleCount)), ()) {
| #Dist(#SampleSet(p)) => Ok(p)
| #Error(r) => Error(r)
| _ => Error(ImpossiblePath)
}
}
switch fnName {
// | (#toFloat(n), v) => toFloat(toPointSet, v, n)
| #toFloat(fnName) =>
T.toFloat(toPointSet, fnName, value) |> E.R.fmap(r => #Float(r)) |> fromResult
| #toDist(#normalize) => value |> T.normalize |> (r => #Dist(r))
| #toDist(#truncate(left, right)) =>
value |> T.Truncate.run(toPointSet, left, right) |> E.R.fmap(r => #Dist(r)) |> fromResult
| #toDist(#toPointSet) =>
value |> T.toPointSet(xyPointLength) |> E.R.fmap(r => #Dist(#PointSet(r))) |> fromResult
| #toDist(#toSampleSet(n)) =>
value |> T.sampleN(n) |> E.R.fmap(r => #Dist(#SampleSet(r))) |> fromResult
| #toDistCombination(#Algebraic, _, #Float(_)) => #Error(NotYetImplemented)
| #toDistCombination(#Algebraic, operation, #Dist(value2)) =>
value
|> T.AlgebraicCombination.run(toPointSet, toSampleSet, operation, value2)
|> E.R.fmap(r => #Dist(r))
|> fromResult
| #toDistCombination(#Pointwise, operation, #Dist(value2)) =>
value
|> T.pointwiseCombination(toPointSet, operation, value2)
|> E.R.fmap(r => #Dist(r))
|> fromResult
| #toDistCombination(#Pointwise, operation, #Float(f)) =>
value
|> T.pointwiseCombinationFloat(toPointSet, operation, f)
|> E.R.fmap(r => #Dist(r))
|> fromResult
}
}
}
// let applyFn = (wrapped, fnName): wrapped => {
// let (v, extra) as result = applyFnInternal(wrapped, fnName)
// switch v {
// | #Error(NeedsPointSetConversion) => {
// let convertedToPointSet = applyFnInternal(wrapped, #toDist(#toPointSet))
// applyFnInternal(convertedToPointSet, fnName)
// }
// | #Error(InputsNeedPointSetConversion) => {
// let altDist = switch fnName {
// | #toDistCombination(p1, p2, dist) => {
// let (newDist, _) = applyFnInternal((dist, extra), #toDist(#toPointSet))
// applyFnInternal(wrapped, #toDistCombination(p1, p2, newDist))
// }
// | _ => (#Error(Other("Not needed")), extra)
// }
// altDist
// }
// | _ => result
// }
// }
// let exampleDist: genericDist = #PointSet(
// Discrete(Discrete.make(~integralSumCache=Some(1.0), {xs: [3.0], ys: [1.0]})),
// )
// let foo = exampleDist->wrapWithParams(genericParams)->applyFn(#toDist(#normalize))