diff --git a/packages/squiggle-lang/src/rescript/FunctionRegistry/Library/FR_Danger.res b/packages/squiggle-lang/src/rescript/FunctionRegistry/Library/FR_Danger.res index b4c1a5e6..5f4cce4a 100644 --- a/packages/squiggle-lang/src/rescript/FunctionRegistry/Library/FR_Danger.res +++ b/packages/squiggle-lang/src/rescript/FunctionRegistry/Library/FR_Danger.res @@ -55,7 +55,6 @@ module Internals = { // Integral helper functions - let castFloatToInternalNumber = x => ReducerInterface_InternalExpressionValue.IEvNumber(x) let castArrayOfFloatsToInternalArrayOfInternals = xs => ReducerInterface_InternalExpressionValue.IEvArray( Belt.Array.map(xs, x => castFloatToInternalNumber(x)), @@ -79,7 +78,7 @@ module Internals = { // reason for existence: might be an useful template to have for calculating diminishing marginal returns later on applyFunctionAtPoint(aLambda, castFloatToInternalNumber(point), environment, reducer) // integrate function itself - */ + */ let integrateFunctionBetweenWithNumIntegrationPoints = ( aLambda, min: float, @@ -323,7 +322,7 @@ module Internals = { let increment = funds /. numDivisions let arrayOfIncrements = Belt.Array.makeBy(numDivisionsInt, _ => increment) let numLambdas = E.A.length(lambdas) - + let initAccumulator: diminishingReturnsAccumulator = Ok({ optimalAllocations: Belt.Array.makeBy(numLambdas, _ => 0.0), currentMarginalReturns: E.A.fmap( @@ -331,7 +330,7 @@ module Internals = { lambdas, )->E.A.R.firstErrorOrOpen, }) - + let optimalAllocationEndAccumulator = E.A.reduce(arrayOfIncrements, initAccumulator, ( acc, newIncrement, @@ -377,7 +376,7 @@ module Internals = { | Ok(inner) => Ok(castArrayOfFloatsToInternalArrayOfInternals(inner.optimalAllocations)) | Error(b) => Error(b) } - + optimalAllocationResult // let result = [0.0, 0.0]->castArrayOfFloatsToInternalArrayOfInternals->Ok // result @@ -477,7 +476,7 @@ let library = [ ], (), ), - */ + */ // Integral in terms of function, min, max, num points // Note that execution time will be more predictable, because it // will only depend on num points and the complexity of the function