Ran formatter
This commit is contained in:
parent
f41f6617df
commit
b28df258e1
|
@ -230,7 +230,7 @@ module Float = {
|
||||||
let inv = (p, t: t) => p < t ? 0.0 : 1.0
|
let inv = (p, t: t) => p < t ? 0.0 : 1.0
|
||||||
let mean = (t: t) => Ok(t)
|
let mean = (t: t) => Ok(t)
|
||||||
let sample = (t: t) => t
|
let sample = (t: t) => t
|
||||||
let toString = Js.Float.toString
|
let toString = (t:t) => j`Delta($t)`
|
||||||
}
|
}
|
||||||
|
|
||||||
module From90thPercentile = {
|
module From90thPercentile = {
|
||||||
|
|
|
@ -220,9 +220,12 @@ Creates a [uniform distribution](<https://en.wikipedia.org/wiki/Uniform_distribu
|
||||||
|
|
||||||
Creates a discrete distribution with all of its probability mass at point `value`.
|
Creates a discrete distribution with all of its probability mass at point `value`.
|
||||||
|
|
||||||
Numbers are often cast into delta distributions automatically. For example, in the function,
|
Few Squiggle users call the function `delta()` directly. Numbers are converted into delta distributions automatically, when it is appropriate.
|
||||||
`mixture(1,2,normal(5,2))`, the first two arguments will get converted into delta distributions
|
|
||||||
with values at 1 and 2. Therefore, `mixture(1,2,normal(5,2))` is the same as `mixture(delta(1), delta(2),normal(5,2))`
|
For example, in the function `mixture(1,2,normal(5,2))`, the first two arguments will get converted into delta distributions
|
||||||
|
with values at 1 and 2. Therefore, this is the same as `mixture(delta(1),delta(2),normal(5,2))`.
|
||||||
|
|
||||||
|
`Delta()` distributions are currently the only discrete distributions accessible in Squiggle.
|
||||||
|
|
||||||
<Tabs>
|
<Tabs>
|
||||||
<TabItem value="ex1" label="delta(3)" default>
|
<TabItem value="ex1" label="delta(3)" default>
|
||||||
|
@ -234,8 +237,11 @@ with values at 1 and 2. Therefore, `mixture(1,2,normal(5,2))` is the same as `mi
|
||||||
<TabItem value="ex2" label="normal(5,2) * 6">
|
<TabItem value="ex2" label="normal(5,2) * 6">
|
||||||
<SquiggleEditor initialSquiggleString="normal(5,2) * 6" />
|
<SquiggleEditor initialSquiggleString="normal(5,2) * 6" />
|
||||||
</TabItem>
|
</TabItem>
|
||||||
<TabItem value="ex4" label="normal(5,2) .* 6">
|
<TabItem value="ex4" label="dotAdd(normal(5,2), 6)">
|
||||||
<SquiggleEditor initialSquiggleString="normal(5,2) .* 6" />
|
<SquiggleEditor initialSquiggleString="dotAdd(normal(5,2), 6)" />
|
||||||
|
</TabItem>
|
||||||
|
<TabItem value="ex5" label="dotMultiply(normal(5,2), 6)">
|
||||||
|
<SquiggleEditor initialSquiggleString="dotMultiply(normal(5,2), 6)" />
|
||||||
</TabItem>
|
</TabItem>
|
||||||
</Tabs>
|
</Tabs>
|
||||||
|
|
||||||
|
@ -315,8 +321,6 @@ Creates an [exponential distribution](https://en.wikipedia.org/wiki/Exponential_
|
||||||
|
|
||||||
Creates a [triangular distribution](https://en.wikipedia.org/wiki/Triangular_distribution) with the given low, mode, and high values.
|
Creates a [triangular distribution](https://en.wikipedia.org/wiki/Triangular_distribution) with the given low, mode, and high values.
|
||||||
|
|
||||||
#### Validity
|
|
||||||
|
|
||||||
### Arguments
|
### Arguments
|
||||||
|
|
||||||
- `low`: Number
|
- `low`: Number
|
||||||
|
@ -336,3 +340,16 @@ Creates a sample set distribution using an array of samples.
|
||||||
### Arguments
|
### Arguments
|
||||||
|
|
||||||
- `samples`: An array of at least 5 numbers.
|
- `samples`: An array of at least 5 numbers.
|
||||||
|
|
||||||
|
<Admonition type="caution" title="Caution!">
|
||||||
|
<p>
|
||||||
|
Samples are converted into{" "}
|
||||||
|
<a href="https://en.wikipedia.org/wiki/Probability_density_function">PDF</a>{" "}
|
||||||
|
shapes automatically using{" "}
|
||||||
|
<a href="https://en.wikipedia.org/wiki/Kernel_density_estimation">
|
||||||
|
kernel density estimation
|
||||||
|
</a>{" "}
|
||||||
|
and an approximated bandwidth. Eventually Squiggle will allow for more
|
||||||
|
specificity.
|
||||||
|
</p>
|
||||||
|
</Admonition>
|
||||||
|
|
Loading…
Reference in New Issue
Block a user