Merge branch 'develop' into reducer-typecheck

This commit is contained in:
Umur Ozkul 2022-07-18 15:18:10 +02:00
commit abee4db340
44 changed files with 2343 additions and 1459 deletions

View File

@ -1,29 +1,29 @@
{ {
"name": "@quri/squiggle-components", "name": "@quri/squiggle-components",
"version": "0.2.20", "version": "0.2.23",
"license": "MIT", "license": "MIT",
"dependencies": { "dependencies": {
"@headlessui/react": "^1.6.5", "@headlessui/react": "^1.6.6",
"@heroicons/react": "^1.0.6", "@heroicons/react": "^1.0.6",
"@hookform/resolvers": "^2.9.3", "@hookform/resolvers": "^2.9.5",
"@quri/squiggle-lang": "^0.2.8", "@quri/squiggle-lang": "^0.2.8",
"@react-hook/size": "^2.1.2", "@react-hook/size": "^2.1.2",
"clsx": "^1.1.1", "clsx": "^1.2.1",
"framer-motion": "^6.4.1", "framer-motion": "^6.4.3",
"lodash": "^4.17.21", "lodash": "^4.17.21",
"react": "^18.1.0", "react": "^18.1.0",
"react-ace": "^10.1.0", "react-ace": "^10.1.0",
"react-hook-form": "^7.33.0", "react-hook-form": "^7.33.1",
"react-use": "^17.4.0", "react-use": "^17.4.0",
"react-vega": "^7.5.1", "react-vega": "^7.6.0",
"vega": "^5.22.1", "vega": "^5.22.1",
"vega-embed": "^6.21.0", "vega-embed": "^6.21.0",
"vega-lite": "^5.2.0", "vega-lite": "^5.3.0",
"vscode-uri": "^3.0.3", "vscode-uri": "^3.0.3",
"yup": "^0.32.11" "yup": "^0.32.11"
}, },
"devDependencies": { "devDependencies": {
"@babel/plugin-proposal-private-property-in-object": "^7.17.12", "@babel/plugin-proposal-private-property-in-object": "^7.18.6",
"@storybook/addon-actions": "^6.5.9", "@storybook/addon-actions": "^6.5.9",
"@storybook/addon-essentials": "^6.5.9", "@storybook/addon-essentials": "^6.5.9",
"@storybook/addon-links": "^6.5.9", "@storybook/addon-links": "^6.5.9",
@ -37,26 +37,26 @@
"@testing-library/user-event": "^14.2.1", "@testing-library/user-event": "^14.2.1",
"@types/jest": "^27.5.0", "@types/jest": "^27.5.0",
"@types/lodash": "^4.14.182", "@types/lodash": "^4.14.182",
"@types/node": "^18.0.0", "@types/node": "^18.0.3",
"@types/react": "^18.0.9", "@types/react": "^18.0.9",
"@types/styled-components": "^5.1.24", "@types/styled-components": "^5.1.24",
"@types/webpack": "^5.28.0", "@types/webpack": "^5.28.0",
"cross-env": "^7.0.3", "cross-env": "^7.0.3",
"mini-css-extract-plugin": "^2.6.1", "mini-css-extract-plugin": "^2.6.1",
"postcss-cli": "^9.1.0", "postcss-cli": "^10.0.0",
"postcss-import": "^14.1.0", "postcss-import": "^14.1.0",
"postcss-loader": "^7.0.0", "postcss-loader": "^7.0.1",
"react": "^18.1.0", "react": "^18.1.0",
"react-scripts": "^5.0.1", "react-scripts": "^5.0.1",
"style-loader": "^3.3.1", "style-loader": "^3.3.1",
"tailwindcss": "^3.1.3", "tailwindcss": "^3.1.5",
"ts-loader": "^9.3.0", "ts-loader": "^9.3.0",
"tsconfig-paths-webpack-plugin": "^3.5.2", "tsconfig-paths-webpack-plugin": "^3.5.2",
"typescript": "^4.7.4", "typescript": "^4.7.4",
"web-vitals": "^2.1.4", "web-vitals": "^2.1.4",
"webpack": "^5.73.0", "webpack": "^5.73.0",
"webpack-cli": "^4.10.0", "webpack-cli": "^4.10.0",
"webpack-dev-server": "^4.9.2" "webpack-dev-server": "^4.9.3"
}, },
"peerDependencies": { "peerDependencies": {
"react": "^16.8.0 || ^17 || ^18", "react": "^16.8.0 || ^17 || ^18",

View File

@ -5,18 +5,15 @@ import {
distributionError, distributionError,
distributionErrorToString, distributionErrorToString,
} from "@quri/squiggle-lang"; } from "@quri/squiggle-lang";
import { Vega, VisualizationSpec } from "react-vega"; import { Vega } from "react-vega";
import * as chartSpecification from "../vega-specs/spec-distributions.json";
import { ErrorAlert } from "./Alert"; import { ErrorAlert } from "./Alert";
import { useSize } from "react-use"; import { useSize } from "react-use";
import clsx from "clsx"; import clsx from "clsx";
import { import {
linearXScale, buildVegaSpec,
logXScale, DistributionChartSpecOptions,
linearYScale, } from "../lib/distributionSpecBuilder";
expYScale,
} from "./DistributionVegaScales";
import { NumberShower } from "./NumberShower"; import { NumberShower } from "./NumberShower";
export type DistributionPlottingSettings = { export type DistributionPlottingSettings = {
@ -24,19 +21,17 @@ export type DistributionPlottingSettings = {
showSummary: boolean; showSummary: boolean;
/** Whether to show the user graph controls (scale etc) */ /** Whether to show the user graph controls (scale etc) */
showControls: boolean; showControls: boolean;
/** Set the x scale to be logarithmic by deault */ } & DistributionChartSpecOptions;
logX: boolean;
/** Set the y scale to be exponential by deault */
expY: boolean;
};
export type DistributionChartProps = { export type DistributionChartProps = {
distribution: Distribution; distribution: Distribution;
width?: number; width?: number;
height: number; height: number;
actions?: boolean;
} & DistributionPlottingSettings; } & DistributionPlottingSettings;
export const DistributionChart: React.FC<DistributionChartProps> = ({ export const DistributionChart: React.FC<DistributionChartProps> = (props) => {
const {
distribution, distribution,
height, height,
showSummary, showSummary,
@ -44,7 +39,8 @@ export const DistributionChart: React.FC<DistributionChartProps> = ({
showControls, showControls,
logX, logX,
expY, expY,
}) => { actions = false,
} = props;
const [isLogX, setLogX] = React.useState(logX); const [isLogX, setLogX] = React.useState(logX);
const [isExpY, setExpY] = React.useState(expY); const [isExpY, setExpY] = React.useState(expY);
@ -64,7 +60,7 @@ export const DistributionChart: React.FC<DistributionChartProps> = ({
const massBelow0 = const massBelow0 =
shape.value.continuous.some((x) => x.x <= 0) || shape.value.continuous.some((x) => x.x <= 0) ||
shape.value.discrete.some((x) => x.x <= 0); shape.value.discrete.some((x) => x.x <= 0);
const spec = buildVegaSpec(isLogX, isExpY); const spec = buildVegaSpec(props);
let widthProp = width ? width : size.width; let widthProp = width ? width : size.width;
if (widthProp < 20) { if (widthProp < 20) {
@ -82,7 +78,7 @@ export const DistributionChart: React.FC<DistributionChartProps> = ({
data={{ con: shape.value.continuous, dis: shape.value.discrete }} data={{ con: shape.value.continuous, dis: shape.value.discrete }}
width={widthProp - 10} width={widthProp - 10}
height={height} height={height}
actions={false} actions={actions}
/> />
) : ( ) : (
<ErrorAlert heading="Log Domain Error"> <ErrorAlert heading="Log Domain Error">
@ -116,16 +112,6 @@ export const DistributionChart: React.FC<DistributionChartProps> = ({
return sized; return sized;
}; };
function buildVegaSpec(isLogX: boolean, isExpY: boolean): VisualizationSpec {
return {
...chartSpecification,
scales: [
isLogX ? logXScale : linearXScale,
isExpY ? expYScale : linearYScale,
],
} as VisualizationSpec;
}
interface CheckBoxProps { interface CheckBoxProps {
label: string; label: string;
onChange: (x: boolean) => void; onChange: (x: boolean) => void;

View File

@ -44,6 +44,18 @@ export interface SquiggleChartProps {
logX?: boolean; logX?: boolean;
/** Set the y scale to be exponential by deault */ /** Set the y scale to be exponential by deault */
expY?: boolean; expY?: boolean;
/** How to format numbers on the x axis */
tickFormat?: string;
/** Title of the graphed distribution */
title?: string;
/** Color of the graphed distribution */
color?: string;
/** Specify the lower bound of the x scale */
minX?: number;
/** Specify the upper bound of the x scale */
maxX?: number;
/** Whether to show vega actions to the user, so they can copy the chart spec */
distributionChartActions?: boolean;
} }
const defaultOnChange = () => {}; const defaultOnChange = () => {};
@ -65,6 +77,12 @@ export const SquiggleChart: React.FC<SquiggleChartProps> = React.memo(
diagramStart = 0, diagramStart = 0,
diagramStop = 10, diagramStop = 10,
diagramCount = 100, diagramCount = 100,
tickFormat,
minX,
maxX,
color,
title,
distributionChartActions,
}) => { }) => {
const result = useSquiggle({ const result = useSquiggle({
code, code,
@ -83,6 +101,12 @@ export const SquiggleChart: React.FC<SquiggleChartProps> = React.memo(
showSummary, showSummary,
logX, logX,
expY, expY,
format: tickFormat,
minX,
maxX,
color,
title,
actions: distributionChartActions,
}; };
let chartSettings = { let chartSettings = {

View File

@ -18,7 +18,7 @@ import clsx from "clsx";
import { defaultBindings, environment } from "@quri/squiggle-lang"; import { defaultBindings, environment } from "@quri/squiggle-lang";
import { SquiggleChart } from "./SquiggleChart"; import { SquiggleChart, SquiggleChartProps } from "./SquiggleChart";
import { CodeEditor } from "./CodeEditor"; import { CodeEditor } from "./CodeEditor";
import { JsonEditor } from "./JsonEditor"; import { JsonEditor } from "./JsonEditor";
import { ErrorAlert, SuccessAlert } from "./Alert"; import { ErrorAlert, SuccessAlert } from "./Alert";
@ -27,28 +27,16 @@ import { Toggle } from "./ui/Toggle";
import { Checkbox } from "./ui/Checkbox"; import { Checkbox } from "./ui/Checkbox";
import { StyledTab } from "./ui/StyledTab"; import { StyledTab } from "./ui/StyledTab";
interface PlaygroundProps { type PlaygroundProps = SquiggleChartProps & {
/** The initial squiggle string to put in the playground */ /** The initial squiggle string to put in the playground */
defaultCode?: string; defaultCode?: string;
/** How many pixels high is the playground */ /** How many pixels high is the playground */
height?: number;
/** Whether to show the types of outputs in the playground */
showTypes?: boolean;
/** Whether to show the log scale controls in the playground */
showControls?: boolean;
/** Whether to show the summary table in the playground */
showSummary?: boolean;
/** Whether to log the x coordinate on distribution charts */
logX?: boolean;
/** Whether to exp the y coordinate on distribution charts */
expY?: boolean;
/** If code is set, component becomes controlled */
code?: string;
onCodeChange?(expr: string): void; onCodeChange?(expr: string): void;
/* When settings change */
onSettingsChange?(settings: any): void; onSettingsChange?(settings: any): void;
/** Should we show the editor? */ /** Should we show the editor? */
showEditor?: boolean; showEditor?: boolean;
} };
const schema = yup.object({}).shape({ const schema = yup.object({}).shape({
sampleCount: yup sampleCount: yup
@ -82,6 +70,12 @@ const schema = yup.object({}).shape({
showEditor: yup.boolean().required(), showEditor: yup.boolean().required(),
logX: yup.boolean().required(), logX: yup.boolean().required(),
expY: yup.boolean().required(), expY: yup.boolean().required(),
tickFormat: yup.string().default(".9~s"),
title: yup.string(),
color: yup.string().default("#739ECC").required(),
minX: yup.number(),
maxX: yup.number(),
distributionChartActions: yup.boolean(),
showSettingsPage: yup.boolean().default(false), showSettingsPage: yup.boolean().default(false),
diagramStart: yup.number().required().positive().integer().default(0).min(0), diagramStart: yup.number().required().positive().integer().default(0).min(0),
diagramStop: yup.number().required().positive().integer().default(10).min(0), diagramStop: yup.number().required().positive().integer().default(10).min(0),
@ -114,7 +108,7 @@ function InputItem<T>({
}: { }: {
name: Path<T>; name: Path<T>;
label: string; label: string;
type: "number"; type: "number" | "text" | "color";
register: UseFormRegister<T>; register: UseFormRegister<T>;
}) { }) {
return ( return (
@ -122,7 +116,7 @@ function InputItem<T>({
<div className="text-sm font-medium text-gray-600 mb-1">{label}</div> <div className="text-sm font-medium text-gray-600 mb-1">{label}</div>
<input <input
type={type} type={type}
{...register(name)} {...register(name, { valueAsNumber: type === "number" })}
className="form-input max-w-lg block w-full shadow-sm focus:ring-indigo-500 focus:border-indigo-500 sm:max-w-xs sm:text-sm border-gray-300 rounded-md" className="form-input max-w-lg block w-full shadow-sm focus:ring-indigo-500 focus:border-indigo-500 sm:max-w-xs sm:text-sm border-gray-300 rounded-md"
/> />
</label> </label>
@ -202,6 +196,11 @@ const ViewSettings: React.FC<{ register: UseFormRegister<FormFields> }> = ({
name="expY" name="expY"
label="Show y scale exponentially" label="Show y scale exponentially"
/> />
<Checkbox
register={register}
name="distributionChartActions"
label="Show vega chart controls"
/>
<Checkbox <Checkbox
register={register} register={register}
name="showControls" name="showControls"
@ -212,6 +211,36 @@ const ViewSettings: React.FC<{ register: UseFormRegister<FormFields> }> = ({
name="showSummary" name="showSummary"
label="Show summary statistics" label="Show summary statistics"
/> />
<InputItem
name="minX"
type="number"
register={register}
label="Min X Value"
/>
<InputItem
name="maxX"
type="number"
register={register}
label="Max X Value"
/>
<InputItem
name="title"
type="text"
register={register}
label="Title"
/>
<InputItem
name="tickFormat"
type="text"
register={register}
label="Tick Format"
/>
<InputItem
name="color"
type="color"
register={register}
label="Color"
/>
</div> </div>
</HeadedSection> </HeadedSection>
</div> </div>
@ -385,6 +414,12 @@ export const SquigglePlayground: FC<PlaygroundProps> = ({
showSummary = false, showSummary = false,
logX = false, logX = false,
expY = false, expY = false,
title,
minX,
maxX,
color = "#739ECC",
tickFormat = ".9~s",
distributionChartActions,
code: controlledCode, code: controlledCode,
onCodeChange, onCodeChange,
onSettingsChange, onSettingsChange,
@ -408,6 +443,12 @@ export const SquigglePlayground: FC<PlaygroundProps> = ({
showControls, showControls,
logX, logX,
expY, expY,
title,
minX,
maxX,
color,
tickFormat,
distributionChartActions,
showSummary, showSummary,
showEditor, showEditor,
leftSizePercent: 50, leftSizePercent: 50,
@ -440,15 +481,7 @@ export const SquigglePlayground: FC<PlaygroundProps> = ({
<SquiggleChart <SquiggleChart
code={renderedCode} code={renderedCode}
environment={env} environment={env}
diagramStart={Number(vars.diagramStart)} {...vars}
diagramStop={Number(vars.diagramStop)}
diagramCount={Number(vars.diagramCount)}
height={vars.chartHeight}
showTypes={vars.showTypes}
showControls={vars.showControls}
showSummary={vars.showSummary}
logX={vars.logX}
expY={vars.expY}
bindings={defaultBindings} bindings={defaultBindings}
jsImports={imports} jsImports={imports}
/> />
@ -488,7 +521,7 @@ export const SquigglePlayground: FC<PlaygroundProps> = ({
); );
const withEditor = ( const withEditor = (
<div className="flex mt-1"> <div className="flex mt-2">
<div className="w-1/2">{tabs}</div> <div className="w-1/2">{tabs}</div>
<div className="w-1/2 p-2 pl-4">{squiggleChart}</div> <div className="w-1/2 p-2 pl-4">{squiggleChart}</div>
</div> </div>
@ -496,6 +529,7 @@ export const SquigglePlayground: FC<PlaygroundProps> = ({
const withoutEditor = <div className="mt-3">{tabs}</div>; const withoutEditor = <div className="mt-3">{tabs}</div>;
console.log(vars);
return ( return (
<SquiggleContainer> <SquiggleContainer>
<StyledTab.Group> <StyledTab.Group>

View File

@ -23,8 +23,8 @@ export const Toggle: React.FC<Props> = ({
layout layout
transition={{ duration: 0.2 }} transition={{ duration: 0.2 }}
className={clsx( className={clsx(
"rounded-full py-1 bg-indigo-500 text-white text-xs font-semibold flex items-center space-x-1", "rounded-md py-0.5 bg-slate-500 text-white text-xs font-semibold flex items-center space-x-1",
status ? "bg-indigo-500" : "bg-gray-400", status ? "bg-slate-500" : "bg-gray-400",
status ? "pl-1 pr-3" : "pl-3 pr-1", status ? "pl-1 pr-3" : "pl-3 pr-1",
!status && "flex-row-reverse space-x-reverse" !status && "flex-row-reverse space-x-reverse"
)} )}

View File

@ -0,0 +1,256 @@
import { VisualizationSpec } from "react-vega";
import type { LogScale, LinearScale, PowScale } from "vega";
export type DistributionChartSpecOptions = {
/** Set the x scale to be logarithmic by deault */
logX: boolean;
/** Set the y scale to be exponential by deault */
expY: boolean;
/** The minimum x coordinate shown on the chart */
minX?: number;
/** The maximum x coordinate shown on the chart */
maxX?: number;
/** The color of the chart */
color?: string;
/** The title of the chart */
title?: string;
/** The formatting of the ticks */
format?: string;
};
export let linearXScale: LinearScale = {
name: "xscale",
clamp: true,
type: "linear",
range: "width",
zero: false,
nice: false,
domain: {
fields: [
{
data: "con",
field: "x",
},
{
data: "dis",
field: "x",
},
],
},
};
export let linearYScale: LinearScale = {
name: "yscale",
type: "linear",
range: "height",
zero: true,
domain: {
fields: [
{
data: "con",
field: "y",
},
{
data: "dis",
field: "y",
},
],
},
};
export let logXScale: LogScale = {
name: "xscale",
type: "log",
range: "width",
zero: false,
base: 10,
nice: false,
clamp: true,
domain: {
fields: [
{
data: "con",
field: "x",
},
{
data: "dis",
field: "x",
},
],
},
};
export let expYScale: PowScale = {
name: "yscale",
type: "pow",
exponent: 0.1,
range: "height",
zero: true,
nice: false,
domain: {
fields: [
{
data: "con",
field: "y",
},
{
data: "dis",
field: "y",
},
],
},
};
export function buildVegaSpec(
specOptions: DistributionChartSpecOptions
): VisualizationSpec {
let {
format = ".9~s",
color = "#739ECC",
title,
minX,
maxX,
logX,
expY,
} = specOptions;
let xScale = logX ? logXScale : linearXScale;
if (minX !== undefined && Number.isFinite(minX)) {
xScale = { ...xScale, domainMin: minX };
}
if (maxX !== undefined && Number.isFinite(maxX)) {
xScale = { ...xScale, domainMax: maxX };
}
let spec: VisualizationSpec = {
$schema: "https://vega.github.io/schema/vega/v5.json",
description: "A basic area chart example",
width: 500,
height: 100,
padding: 5,
data: [
{
name: "con",
},
{
name: "dis",
},
],
signals: [],
scales: [xScale, expY ? expYScale : linearYScale],
axes: [
{
orient: "bottom",
scale: "xscale",
labelColor: "#727d93",
tickColor: "#fff",
tickOpacity: 0.0,
domainColor: "#fff",
domainOpacity: 0.0,
format: format,
tickCount: 10,
},
],
marks: [
{
type: "area",
from: {
data: "con",
},
encode: {
update: {
interpolate: { value: "linear" },
x: {
scale: "xscale",
field: "x",
},
y: {
scale: "yscale",
field: "y",
},
y2: {
scale: "yscale",
value: 0,
},
fill: {
value: color,
},
fillOpacity: {
value: 1,
},
},
},
},
{
type: "rect",
from: {
data: "dis",
},
encode: {
enter: {
width: {
value: 1,
},
},
update: {
x: {
scale: "xscale",
field: "x",
},
y: {
scale: "yscale",
field: "y",
},
y2: {
scale: "yscale",
value: 0,
},
fill: {
value: "#2f65a7",
},
},
},
},
{
type: "symbol",
from: {
data: "dis",
},
encode: {
enter: {
shape: {
value: "circle",
},
size: [{ value: 100 }],
tooltip: {
signal: "datum.y",
},
},
update: {
x: {
scale: "xscale",
field: "x",
},
y: {
scale: "yscale",
field: "y",
},
fill: {
value: "#1e4577",
},
},
},
},
],
};
if (title) {
spec = {
...spec,
title: {
text: title,
},
};
}
return spec;
}

View File

@ -3,7 +3,7 @@ import { Canvas, Meta, Story, Props } from "@storybook/addon-docs";
<Meta title="Squiggle/SquiggleChart" component={SquiggleChart} /> <Meta title="Squiggle/SquiggleChart" component={SquiggleChart} />
export const Template = SquiggleChart; export const Template = (props) => <SquiggleChart {...props} />;
/* /*
We have to hardcode a width here, because otherwise some interaction with We have to hardcode a width here, because otherwise some interaction with
Storybook creates an infinite loop with the internal width Storybook creates an infinite loop with the internal width

View File

@ -1,7 +1,7 @@
open Jest open Jest
open Expect open Expect
let env: DistributionOperation.env = { let env: GenericDist.env = {
sampleCount: 100, sampleCount: 100,
xyPointLength: 100, xyPointLength: 100,
} }
@ -34,7 +34,7 @@ describe("sparkline", () => {
expected: DistributionOperation.outputType, expected: DistributionOperation.outputType,
) => { ) => {
test(name, () => { test(name, () => {
let result = DistributionOperation.run(~env, FromDist(ToString(ToSparkline(20)), dist)) let result = DistributionOperation.run(~env, FromDist(#ToString(ToSparkline(20)), dist))
expect(result)->toEqual(expected) expect(result)->toEqual(expected)
}) })
} }
@ -81,8 +81,8 @@ describe("sparkline", () => {
describe("toPointSet", () => { describe("toPointSet", () => {
test("on symbolic normal distribution", () => { test("on symbolic normal distribution", () => {
let result = let result =
run(FromDist(ToDist(ToPointSet), normalDist5)) run(FromDist(#ToDist(ToPointSet), normalDist5))
->outputMap(FromDist(ToFloat(#Mean))) ->outputMap(FromDist(#ToFloat(#Mean)))
->toFloat ->toFloat
->toExt ->toExt
expect(result)->toBeSoCloseTo(5.0, ~digits=0) expect(result)->toBeSoCloseTo(5.0, ~digits=0)
@ -90,10 +90,10 @@ describe("toPointSet", () => {
test("on sample set", () => { test("on sample set", () => {
let result = let result =
run(FromDist(ToDist(ToPointSet), normalDist5)) run(FromDist(#ToDist(ToPointSet), normalDist5))
->outputMap(FromDist(ToDist(ToSampleSet(1000)))) ->outputMap(FromDist(#ToDist(ToSampleSet(1000))))
->outputMap(FromDist(ToDist(ToPointSet))) ->outputMap(FromDist(#ToDist(ToPointSet)))
->outputMap(FromDist(ToFloat(#Mean))) ->outputMap(FromDist(#ToFloat(#Mean)))
->toFloat ->toFloat
->toExt ->toExt
expect(result)->toBeSoCloseTo(5.0, ~digits=-1) expect(result)->toBeSoCloseTo(5.0, ~digits=-1)

View File

@ -19,7 +19,6 @@ exception MixtureFailed
let float1 = 1.0 let float1 = 1.0
let float2 = 2.0 let float2 = 2.0
let float3 = 3.0 let float3 = 3.0
let {mkDelta} = module(TestHelpers) let point1 = TestHelpers.mkDelta(float1)
let point1 = mkDelta(float1) let point2 = TestHelpers.mkDelta(float2)
let point2 = mkDelta(float2) let point3 = TestHelpers.mkDelta(float3)
let point3 = mkDelta(float3)

View File

@ -11,7 +11,7 @@ describe("mixture", () => {
let (mean1, mean2) = tup let (mean1, mean2) = tup
let meanValue = { let meanValue = {
run(Mixture([(mkNormal(mean1, 9e-1), 0.5), (mkNormal(mean2, 9e-1), 0.5)]))->outputMap( run(Mixture([(mkNormal(mean1, 9e-1), 0.5), (mkNormal(mean2, 9e-1), 0.5)]))->outputMap(
FromDist(ToFloat(#Mean)), FromDist(#ToFloat(#Mean)),
) )
} }
meanValue->unpackFloat->expect->toBeSoCloseTo((mean1 +. mean2) /. 2.0, ~digits=-1) meanValue->unpackFloat->expect->toBeSoCloseTo((mean1 +. mean2) /. 2.0, ~digits=-1)
@ -28,7 +28,7 @@ describe("mixture", () => {
let meanValue = { let meanValue = {
run( run(
Mixture([(mkBeta(alpha, beta), betaWeight), (mkExponential(rate), exponentialWeight)]), Mixture([(mkBeta(alpha, beta), betaWeight), (mkExponential(rate), exponentialWeight)]),
)->outputMap(FromDist(ToFloat(#Mean))) )->outputMap(FromDist(#ToFloat(#Mean)))
} }
let betaMean = 1.0 /. (1.0 +. beta /. alpha) let betaMean = 1.0 /. (1.0 +. beta /. alpha)
let exponentialMean = 1.0 /. rate let exponentialMean = 1.0 /. rate
@ -52,7 +52,7 @@ describe("mixture", () => {
(mkUniform(low, high), uniformWeight), (mkUniform(low, high), uniformWeight),
(mkLognormal(mu, sigma), lognormalWeight), (mkLognormal(mu, sigma), lognormalWeight),
]), ]),
)->outputMap(FromDist(ToFloat(#Mean))) )->outputMap(FromDist(#ToFloat(#Mean)))
} }
let uniformMean = (low +. high) /. 2.0 let uniformMean = (low +. high) /. 2.0
let lognormalMean = mu +. sigma ** 2.0 /. 2.0 let lognormalMean = mu +. sigma ** 2.0 /. 2.0

View File

@ -3,6 +3,7 @@ open Expect
open TestHelpers open TestHelpers
open GenericDist_Fixtures open GenericDist_Fixtures
let klDivergence = DistributionOperation.Constructors.LogScore.distEstimateDistAnswer(~env)
// integral from low to high of 1 / (high - low) log(normal(mean, stdev)(x) / (1 / (high - low))) dx // integral from low to high of 1 / (high - low) log(normal(mean, stdev)(x) / (1 / (high - low))) dx
let klNormalUniform = (mean, stdev, low, high): float => let klNormalUniform = (mean, stdev, low, high): float =>
-.Js.Math.log((high -. low) /. Js.Math.sqrt(2.0 *. MagicNumbers.Math.pi *. stdev ** 2.0)) +. -.Js.Math.log((high -. low) /. Js.Math.sqrt(2.0 *. MagicNumbers.Math.pi *. stdev ** 2.0)) +.
@ -11,8 +12,6 @@ let klNormalUniform = (mean, stdev, low, high): float =>
(mean ** 2.0 -. (high +. low) *. mean +. (low ** 2.0 +. high *. low +. high ** 2.0) /. 3.0) (mean ** 2.0 -. (high +. low) *. mean +. (low ** 2.0 +. high *. low +. high ** 2.0) /. 3.0)
describe("klDivergence: continuous -> continuous -> float", () => { describe("klDivergence: continuous -> continuous -> float", () => {
let klDivergence = DistributionOperation.Constructors.klDivergence(~env)
let testUniform = (lowAnswer, highAnswer, lowPrediction, highPrediction) => { let testUniform = (lowAnswer, highAnswer, lowPrediction, highPrediction) => {
test("of two uniforms is equal to the analytic expression", () => { test("of two uniforms is equal to the analytic expression", () => {
let answer = let answer =
@ -58,7 +57,7 @@ describe("klDivergence: continuous -> continuous -> float", () => {
let kl = E.R.liftJoin2(klDivergence, prediction, answer) let kl = E.R.liftJoin2(klDivergence, prediction, answer)
switch kl { switch kl {
| Ok(kl') => kl'->expect->toBeSoCloseTo(analyticalKl, ~digits=3) | Ok(kl') => kl'->expect->toBeSoCloseTo(analyticalKl, ~digits=2)
| Error(err) => { | Error(err) => {
Js.Console.log(DistributionTypes.Error.toString(err)) Js.Console.log(DistributionTypes.Error.toString(err))
raise(KlFailed) raise(KlFailed)
@ -82,7 +81,6 @@ describe("klDivergence: continuous -> continuous -> float", () => {
}) })
describe("klDivergence: discrete -> discrete -> float", () => { describe("klDivergence: discrete -> discrete -> float", () => {
let klDivergence = DistributionOperation.Constructors.klDivergence(~env)
let mixture = a => DistributionTypes.DistributionOperation.Mixture(a) let mixture = a => DistributionTypes.DistributionOperation.Mixture(a)
let a' = [(point1, 1e0), (point2, 1e0)]->mixture->run let a' = [(point1, 1e0), (point2, 1e0)]->mixture->run
let b' = [(point1, 1e0), (point2, 1e0), (point3, 1e0)]->mixture->run let b' = [(point1, 1e0), (point2, 1e0), (point3, 1e0)]->mixture->run
@ -117,7 +115,6 @@ describe("klDivergence: discrete -> discrete -> float", () => {
}) })
describe("klDivergence: mixed -> mixed -> float", () => { describe("klDivergence: mixed -> mixed -> float", () => {
let klDivergence = DistributionOperation.Constructors.klDivergence(~env)
let mixture' = a => DistributionTypes.DistributionOperation.Mixture(a) let mixture' = a => DistributionTypes.DistributionOperation.Mixture(a)
let mixture = a => { let mixture = a => {
let dist' = a->mixture'->run let dist' = a->mixture'->run
@ -189,15 +186,15 @@ describe("combineAlongSupportOfSecondArgument0", () => {
uniformMakeR(lowPrediction, highPrediction)->E.R2.errMap(s => DistributionTypes.ArgumentError( uniformMakeR(lowPrediction, highPrediction)->E.R2.errMap(s => DistributionTypes.ArgumentError(
s, s,
)) ))
let answerWrapped = E.R.fmap(a => run(FromDist(ToDist(ToPointSet), a)), answer) let answerWrapped = E.R.fmap(a => run(FromDist(#ToDist(ToPointSet), a)), answer)
let predictionWrapped = E.R.fmap(a => run(FromDist(ToDist(ToPointSet), a)), prediction) let predictionWrapped = E.R.fmap(a => run(FromDist(#ToDist(ToPointSet), a)), prediction)
let interpolator = XYShape.XtoY.continuousInterpolator(#Stepwise, #UseZero) let interpolator = XYShape.XtoY.continuousInterpolator(#Stepwise, #UseZero)
let integrand = PointSetDist_Scoring.KLDivergence.integrand let integrand = PointSetDist_Scoring.WithDistAnswer.integrand
let result = switch (answerWrapped, predictionWrapped) { let result = switch (answerWrapped, predictionWrapped) {
| (Ok(Dist(PointSet(Continuous(a)))), Ok(Dist(PointSet(Continuous(b))))) => | (Ok(Dist(PointSet(Continuous(a)))), Ok(Dist(PointSet(Continuous(b))))) =>
Some(combineAlongSupportOfSecondArgument(integrand, interpolator, a.xyShape, b.xyShape)) Some(combineAlongSupportOfSecondArgument(interpolator, integrand, a.xyShape, b.xyShape))
| _ => None | _ => None
} }
result result

View File

@ -0,0 +1,68 @@
open Jest
open Expect
open TestHelpers
open GenericDist_Fixtures
exception ScoreFailed
describe("WithScalarAnswer: discrete -> scalar -> score", () => {
let mixture = a => DistributionTypes.DistributionOperation.Mixture(a)
let pointA = mkDelta(3.0)
let pointB = mkDelta(2.0)
let pointC = mkDelta(1.0)
let pointD = mkDelta(0.0)
test("score: agrees with analytical answer when finite", () => {
let prediction' = [(pointA, 0.25), (pointB, 0.25), (pointC, 0.25), (pointD, 0.25)]->mixture->run
let prediction = switch prediction' {
| Dist(PointSet(p)) => p
| _ => raise(MixtureFailed)
}
let answer = 2.0 // So this is: assigning 100% probability to 2.0
let result = PointSetDist_Scoring.WithScalarAnswer.score(~estimate=prediction, ~answer)
switch result {
| Ok(x) => x->expect->toEqual(-.Js.Math.log(0.25 /. 1.0))
| _ => raise(ScoreFailed)
}
})
test("score: agrees with analytical answer when finite", () => {
let prediction' = [(pointA, 0.75), (pointB, 0.25)]->mixture->run
let prediction = switch prediction' {
| Dist(PointSet(p)) => p
| _ => raise(MixtureFailed)
}
let answer = 3.0 // So this is: assigning 100% probability to 2.0
let result = PointSetDist_Scoring.WithScalarAnswer.score(~estimate=prediction, ~answer)
switch result {
| Ok(x) => x->expect->toEqual(-.Js.Math.log(0.75 /. 1.0))
| _ => raise(ScoreFailed)
}
})
test("scoreWithPrior: agrees with analytical answer when finite", () => {
let prior' = [(pointA, 0.5), (pointB, 0.5)]->mixture->run
let prediction' = [(pointA, 0.75), (pointB, 0.25)]->mixture->run
let prediction = switch prediction' {
| Dist(PointSet(p)) => p
| _ => raise(MixtureFailed)
}
let prior = switch prior' {
| Dist(PointSet(p)) => p
| _ => raise(MixtureFailed)
}
let answer = 3.0 // So this is: assigning 100% probability to 2.0
let result = PointSetDist_Scoring.WithScalarAnswer.scoreWithPrior(
~estimate=prediction,
~answer,
~prior,
)
switch result {
| Ok(x) => x->expect->toEqual(-.Js.Math.log(0.75 /. 1.0) -. -.Js.Math.log(0.5 /. 1.0))
| _ => raise(ScoreFailed)
}
})
})

View File

@ -8,34 +8,34 @@ let mkNormal = (mean, stdev) => DistributionTypes.Symbolic(#Normal({mean: mean,
describe("(Symbolic) normalize", () => { describe("(Symbolic) normalize", () => {
testAll("has no impact on normal distributions", list{-1e8, -1e-2, 0.0, 1e-4, 1e16}, mean => { testAll("has no impact on normal distributions", list{-1e8, -1e-2, 0.0, 1e-4, 1e16}, mean => {
let normalValue = mkNormal(mean, 2.0) let normalValue = mkNormal(mean, 2.0)
let normalizedValue = run(FromDist(ToDist(Normalize), normalValue)) let normalizedValue = run(FromDist(#ToDist(Normalize), normalValue))
normalizedValue->unpackDist->expect->toEqual(normalValue) normalizedValue->unpackDist->expect->toEqual(normalValue)
}) })
}) })
describe("(Symbolic) mean", () => { describe("(Symbolic) mean", () => {
testAll("of normal distributions", list{-1e8, -16.0, -1e-2, 0.0, 1e-4, 32.0, 1e16}, mean => { testAll("of normal distributions", list{-1e8, -16.0, -1e-2, 0.0, 1e-4, 32.0, 1e16}, mean => {
run(FromDist(ToFloat(#Mean), mkNormal(mean, 4.0)))->unpackFloat->expect->toBeCloseTo(mean) run(FromDist(#ToFloat(#Mean), mkNormal(mean, 4.0)))->unpackFloat->expect->toBeCloseTo(mean)
}) })
Skip.test("of normal(0, -1) (it NaNs out)", () => { Skip.test("of normal(0, -1) (it NaNs out)", () => {
run(FromDist(ToFloat(#Mean), mkNormal(1e1, -1e0)))->unpackFloat->expect->ExpectJs.toBeFalsy run(FromDist(#ToFloat(#Mean), mkNormal(1e1, -1e0)))->unpackFloat->expect->ExpectJs.toBeFalsy
}) })
test("of normal(0, 1e-8) (it doesn't freak out at tiny stdev)", () => { test("of normal(0, 1e-8) (it doesn't freak out at tiny stdev)", () => {
run(FromDist(ToFloat(#Mean), mkNormal(0.0, 1e-8)))->unpackFloat->expect->toBeCloseTo(0.0) run(FromDist(#ToFloat(#Mean), mkNormal(0.0, 1e-8)))->unpackFloat->expect->toBeCloseTo(0.0)
}) })
testAll("of exponential distributions", list{1e-7, 2.0, 10.0, 100.0}, rate => { testAll("of exponential distributions", list{1e-7, 2.0, 10.0, 100.0}, rate => {
let meanValue = run( let meanValue = run(
FromDist(ToFloat(#Mean), DistributionTypes.Symbolic(#Exponential({rate: rate}))), FromDist(#ToFloat(#Mean), DistributionTypes.Symbolic(#Exponential({rate: rate}))),
) )
meanValue->unpackFloat->expect->toBeCloseTo(1.0 /. rate) // https://en.wikipedia.org/wiki/Exponential_distribution#Mean,_variance,_moments,_and_median meanValue->unpackFloat->expect->toBeCloseTo(1.0 /. rate) // https://en.wikipedia.org/wiki/Exponential_distribution#Mean,_variance,_moments,_and_median
}) })
test("of a cauchy distribution", () => { test("of a cauchy distribution", () => {
let meanValue = run( let meanValue = run(
FromDist(ToFloat(#Mean), DistributionTypes.Symbolic(#Cauchy({local: 1.0, scale: 1.0}))), FromDist(#ToFloat(#Mean), DistributionTypes.Symbolic(#Cauchy({local: 1.0, scale: 1.0}))),
) )
meanValue->unpackFloat->expect->toBeSoCloseTo(1.0098094001641797, ~digits=5) meanValue->unpackFloat->expect->toBeSoCloseTo(1.0098094001641797, ~digits=5)
//-> toBe(GenDistError(Other("Cauchy distributions may have no mean value."))) //-> toBe(GenDistError(Other("Cauchy distributions may have no mean value.")))
@ -48,7 +48,7 @@ describe("(Symbolic) mean", () => {
let (low, medium, high) = tup let (low, medium, high) = tup
let meanValue = run( let meanValue = run(
FromDist( FromDist(
ToFloat(#Mean), #ToFloat(#Mean),
DistributionTypes.Symbolic(#Triangular({low: low, medium: medium, high: high})), DistributionTypes.Symbolic(#Triangular({low: low, medium: medium, high: high})),
), ),
) )
@ -63,7 +63,7 @@ describe("(Symbolic) mean", () => {
tup => { tup => {
let (alpha, beta) = tup let (alpha, beta) = tup
let meanValue = run( let meanValue = run(
FromDist(ToFloat(#Mean), DistributionTypes.Symbolic(#Beta({alpha: alpha, beta: beta}))), FromDist(#ToFloat(#Mean), DistributionTypes.Symbolic(#Beta({alpha: alpha, beta: beta}))),
) )
meanValue->unpackFloat->expect->toBeCloseTo(1.0 /. (1.0 +. beta /. alpha)) // https://en.wikipedia.org/wiki/Beta_distribution#Mean meanValue->unpackFloat->expect->toBeCloseTo(1.0 /. (1.0 +. beta /. alpha)) // https://en.wikipedia.org/wiki/Beta_distribution#Mean
}, },
@ -72,7 +72,7 @@ describe("(Symbolic) mean", () => {
// TODO: When we have our theory of validators we won't want this to be NaN but to be an error. // TODO: When we have our theory of validators we won't want this to be NaN but to be an error.
test("of beta(0, 0)", () => { test("of beta(0, 0)", () => {
let meanValue = run( let meanValue = run(
FromDist(ToFloat(#Mean), DistributionTypes.Symbolic(#Beta({alpha: 0.0, beta: 0.0}))), FromDist(#ToFloat(#Mean), DistributionTypes.Symbolic(#Beta({alpha: 0.0, beta: 0.0}))),
) )
meanValue->unpackFloat->expect->ExpectJs.toBeFalsy meanValue->unpackFloat->expect->ExpectJs.toBeFalsy
}) })
@ -85,7 +85,7 @@ describe("(Symbolic) mean", () => {
let betaDistribution = SymbolicDist.Beta.fromMeanAndStdev(mean, stdev) let betaDistribution = SymbolicDist.Beta.fromMeanAndStdev(mean, stdev)
let meanValue = let meanValue =
betaDistribution->E.R2.fmap(d => betaDistribution->E.R2.fmap(d =>
run(FromDist(ToFloat(#Mean), d->DistributionTypes.Symbolic)) run(FromDist(#ToFloat(#Mean), d->DistributionTypes.Symbolic))
) )
switch meanValue { switch meanValue {
| Ok(value) => value->unpackFloat->expect->toBeCloseTo(mean) | Ok(value) => value->unpackFloat->expect->toBeCloseTo(mean)
@ -100,7 +100,7 @@ describe("(Symbolic) mean", () => {
tup => { tup => {
let (mu, sigma) = tup let (mu, sigma) = tup
let meanValue = run( let meanValue = run(
FromDist(ToFloat(#Mean), DistributionTypes.Symbolic(#Lognormal({mu: mu, sigma: sigma}))), FromDist(#ToFloat(#Mean), DistributionTypes.Symbolic(#Lognormal({mu: mu, sigma: sigma}))),
) )
meanValue->unpackFloat->expect->toBeCloseTo(Js.Math.exp(mu +. sigma ** 2.0 /. 2.0)) // https://brilliant.org/wiki/log-normal-distribution/ meanValue->unpackFloat->expect->toBeCloseTo(Js.Math.exp(mu +. sigma ** 2.0 /. 2.0)) // https://brilliant.org/wiki/log-normal-distribution/
}, },
@ -112,14 +112,14 @@ describe("(Symbolic) mean", () => {
tup => { tup => {
let (low, high) = tup let (low, high) = tup
let meanValue = run( let meanValue = run(
FromDist(ToFloat(#Mean), DistributionTypes.Symbolic(#Uniform({low: low, high: high}))), FromDist(#ToFloat(#Mean), DistributionTypes.Symbolic(#Uniform({low: low, high: high}))),
) )
meanValue->unpackFloat->expect->toBeCloseTo((low +. high) /. 2.0) // https://en.wikipedia.org/wiki/Continuous_uniform_distribution#Moments meanValue->unpackFloat->expect->toBeCloseTo((low +. high) /. 2.0) // https://en.wikipedia.org/wiki/Continuous_uniform_distribution#Moments
}, },
) )
test("of a float", () => { test("of a float", () => {
let meanValue = run(FromDist(ToFloat(#Mean), DistributionTypes.Symbolic(#Float(7.7)))) let meanValue = run(FromDist(#ToFloat(#Mean), DistributionTypes.Symbolic(#Float(7.7))))
meanValue->unpackFloat->expect->toBeCloseTo(7.7) meanValue->unpackFloat->expect->toBeCloseTo(7.7)
}) })
}) })

View File

@ -29,7 +29,7 @@ let {toFloat, toDist, toString, toError, fmap} = module(DistributionOperation.Ou
let fnImage = (theFn, inps) => Js.Array.map(theFn, inps) let fnImage = (theFn, inps) => Js.Array.map(theFn, inps)
let env: DistributionOperation.env = { let env: GenericDist.env = {
sampleCount: MagicNumbers.Environment.defaultSampleCount, sampleCount: MagicNumbers.Environment.defaultSampleCount,
xyPointLength: MagicNumbers.Environment.defaultXYPointLength, xyPointLength: MagicNumbers.Environment.defaultXYPointLength,
} }

View File

@ -65,7 +65,7 @@
"rescript-fast-check": "^1.1.1", "rescript-fast-check": "^1.1.1",
"ts-jest": "^27.1.4", "ts-jest": "^27.1.4",
"ts-loader": "^9.3.0", "ts-loader": "^9.3.0",
"ts-node": "^10.8.1", "ts-node": "^10.8.2",
"typescript": "^4.7.4", "typescript": "^4.7.4",
"webpack": "^5.73.0", "webpack": "^5.73.0",
"webpack-cli": "^4.10.0" "webpack-cli": "^4.10.0"

View File

@ -4,12 +4,9 @@ type error = DistributionTypes.error
// TODO: It could be great to use a cache for some calculations (basically, do memoization). Also, better analytics/tracking could go a long way. // TODO: It could be great to use a cache for some calculations (basically, do memoization). Also, better analytics/tracking could go a long way.
type env = { type env = GenericDist.env
sampleCount: int,
xyPointLength: int,
}
let defaultEnv = { let defaultEnv: env = {
sampleCount: MagicNumbers.Environment.defaultSampleCount, sampleCount: MagicNumbers.Environment.defaultSampleCount,
xyPointLength: MagicNumbers.Environment.defaultXYPointLength, xyPointLength: MagicNumbers.Environment.defaultXYPointLength,
} }
@ -93,7 +90,7 @@ module OutputLocal = {
} }
} }
let rec run = (~env, functionCallInfo: functionCallInfo): outputType => { let rec run = (~env: env, functionCallInfo: functionCallInfo): outputType => {
let {sampleCount, xyPointLength} = env let {sampleCount, xyPointLength} = env
let reCall = (~env=env, ~functionCallInfo=functionCallInfo, ()) => { let reCall = (~env=env, ~functionCallInfo=functionCallInfo, ()) => {
@ -101,14 +98,14 @@ let rec run = (~env, functionCallInfo: functionCallInfo): outputType => {
} }
let toPointSetFn = r => { let toPointSetFn = r => {
switch reCall(~functionCallInfo=FromDist(ToDist(ToPointSet), r), ()) { switch reCall(~functionCallInfo=FromDist(#ToDist(ToPointSet), r), ()) {
| Dist(PointSet(p)) => Ok(p) | Dist(PointSet(p)) => Ok(p)
| e => Error(OutputLocal.toErrorOrUnreachable(e)) | e => Error(OutputLocal.toErrorOrUnreachable(e))
} }
} }
let toSampleSetFn = r => { let toSampleSetFn = r => {
switch reCall(~functionCallInfo=FromDist(ToDist(ToSampleSet(sampleCount)), r), ()) { switch reCall(~functionCallInfo=FromDist(#ToDist(ToSampleSet(sampleCount)), r), ()) {
| Dist(SampleSet(p)) => Ok(p) | Dist(SampleSet(p)) => Ok(p)
| e => Error(OutputLocal.toErrorOrUnreachable(e)) | e => Error(OutputLocal.toErrorOrUnreachable(e))
} }
@ -116,13 +113,13 @@ let rec run = (~env, functionCallInfo: functionCallInfo): outputType => {
let scaleMultiply = (r, weight) => let scaleMultiply = (r, weight) =>
reCall( reCall(
~functionCallInfo=FromDist(ToDistCombination(Pointwise, #Multiply, #Float(weight)), r), ~functionCallInfo=FromDist(#ToDistCombination(Pointwise, #Multiply, #Float(weight)), r),
(), (),
)->OutputLocal.toDistR )->OutputLocal.toDistR
let pointwiseAdd = (r1, r2) => let pointwiseAdd = (r1, r2) =>
reCall( reCall(
~functionCallInfo=FromDist(ToDistCombination(Pointwise, #Add, #Dist(r2)), r1), ~functionCallInfo=FromDist(#ToDistCombination(Pointwise, #Add, #Dist(r2)), r1),
(), (),
)->OutputLocal.toDistR )->OutputLocal.toDistR
@ -131,49 +128,40 @@ let rec run = (~env, functionCallInfo: functionCallInfo): outputType => {
dist: genericDist, dist: genericDist,
): outputType => { ): outputType => {
let response = switch subFnName { let response = switch subFnName {
| ToFloat(distToFloatOperation) => | #ToFloat(distToFloatOperation) =>
GenericDist.toFloatOperation(dist, ~toPointSetFn, ~distToFloatOperation) GenericDist.toFloatOperation(dist, ~toPointSetFn, ~distToFloatOperation)
->E.R2.fmap(r => Float(r)) ->E.R2.fmap(r => Float(r))
->OutputLocal.fromResult ->OutputLocal.fromResult
| ToString(ToString) => dist->GenericDist.toString->String | #ToString(ToString) => dist->GenericDist.toString->String
| ToString(ToSparkline(bucketCount)) => | #ToString(ToSparkline(bucketCount)) =>
GenericDist.toSparkline(dist, ~sampleCount, ~bucketCount, ()) GenericDist.toSparkline(dist, ~sampleCount, ~bucketCount, ())
->E.R2.fmap(r => String(r)) ->E.R2.fmap(r => String(r))
->OutputLocal.fromResult ->OutputLocal.fromResult
| ToDist(Inspect) => { | #ToDist(Inspect) => {
Js.log2("Console log requested: ", dist) Js.log2("Console log requested: ", dist)
Dist(dist) Dist(dist)
} }
| ToDist(Normalize) => dist->GenericDist.normalize->Dist | #ToDist(Normalize) => dist->GenericDist.normalize->Dist
| ToScore(KLDivergence(t2)) => | #ToScore(LogScore(answer, prior)) =>
GenericDist.Score.klDivergence(dist, t2, ~toPointSetFn) GenericDist.Score.logScore(~estimate=dist, ~answer, ~prior, ~env)
->E.R2.fmap(r => Float(r)) ->E.R2.fmap(s => Float(s))
->OutputLocal.fromResult ->OutputLocal.fromResult
| ToScore(LogScore(answer, prior)) => | #ToBool(IsNormalized) => dist->GenericDist.isNormalized->Bool
GenericDist.Score.logScoreWithPointResolution( | #ToDist(Truncate(leftCutoff, rightCutoff)) =>
~prediction=dist,
~answer,
~prior,
~toPointSetFn,
)
->E.R2.fmap(r => Float(r))
->OutputLocal.fromResult
| ToBool(IsNormalized) => dist->GenericDist.isNormalized->Bool
| ToDist(Truncate(leftCutoff, rightCutoff)) =>
GenericDist.truncate(~toPointSetFn, ~leftCutoff, ~rightCutoff, dist, ()) GenericDist.truncate(~toPointSetFn, ~leftCutoff, ~rightCutoff, dist, ())
->E.R2.fmap(r => Dist(r)) ->E.R2.fmap(r => Dist(r))
->OutputLocal.fromResult ->OutputLocal.fromResult
| ToDist(ToSampleSet(n)) => | #ToDist(ToSampleSet(n)) =>
dist dist
->GenericDist.toSampleSetDist(n) ->GenericDist.toSampleSetDist(n)
->E.R2.fmap(r => Dist(SampleSet(r))) ->E.R2.fmap(r => Dist(SampleSet(r)))
->OutputLocal.fromResult ->OutputLocal.fromResult
| ToDist(ToPointSet) => | #ToDist(ToPointSet) =>
dist dist
->GenericDist.toPointSet(~xyPointLength, ~sampleCount, ()) ->GenericDist.toPointSet(~xyPointLength, ~sampleCount, ())
->E.R2.fmap(r => Dist(PointSet(r))) ->E.R2.fmap(r => Dist(PointSet(r)))
->OutputLocal.fromResult ->OutputLocal.fromResult
| ToDist(Scale(#LogarithmWithThreshold(eps), f)) => | #ToDist(Scale(#LogarithmWithThreshold(eps), f)) =>
dist dist
->GenericDist.pointwiseCombinationFloat( ->GenericDist.pointwiseCombinationFloat(
~toPointSetFn, ~toPointSetFn,
@ -182,23 +170,23 @@ let rec run = (~env, functionCallInfo: functionCallInfo): outputType => {
) )
->E.R2.fmap(r => Dist(r)) ->E.R2.fmap(r => Dist(r))
->OutputLocal.fromResult ->OutputLocal.fromResult
| ToDist(Scale(#Multiply, f)) => | #ToDist(Scale(#Multiply, f)) =>
dist dist
->GenericDist.pointwiseCombinationFloat(~toPointSetFn, ~algebraicCombination=#Multiply, ~f) ->GenericDist.pointwiseCombinationFloat(~toPointSetFn, ~algebraicCombination=#Multiply, ~f)
->E.R2.fmap(r => Dist(r)) ->E.R2.fmap(r => Dist(r))
->OutputLocal.fromResult ->OutputLocal.fromResult
| ToDist(Scale(#Logarithm, f)) => | #ToDist(Scale(#Logarithm, f)) =>
dist dist
->GenericDist.pointwiseCombinationFloat(~toPointSetFn, ~algebraicCombination=#Logarithm, ~f) ->GenericDist.pointwiseCombinationFloat(~toPointSetFn, ~algebraicCombination=#Logarithm, ~f)
->E.R2.fmap(r => Dist(r)) ->E.R2.fmap(r => Dist(r))
->OutputLocal.fromResult ->OutputLocal.fromResult
| ToDist(Scale(#Power, f)) => | #ToDist(Scale(#Power, f)) =>
dist dist
->GenericDist.pointwiseCombinationFloat(~toPointSetFn, ~algebraicCombination=#Power, ~f) ->GenericDist.pointwiseCombinationFloat(~toPointSetFn, ~algebraicCombination=#Power, ~f)
->E.R2.fmap(r => Dist(r)) ->E.R2.fmap(r => Dist(r))
->OutputLocal.fromResult ->OutputLocal.fromResult
| ToDistCombination(Algebraic(_), _, #Float(_)) => GenDistError(NotYetImplemented) | #ToDistCombination(Algebraic(_), _, #Float(_)) => GenDistError(NotYetImplemented)
| ToDistCombination(Algebraic(strategy), arithmeticOperation, #Dist(t2)) => | #ToDistCombination(Algebraic(strategy), arithmeticOperation, #Dist(t2)) =>
dist dist
->GenericDist.algebraicCombination( ->GenericDist.algebraicCombination(
~strategy, ~strategy,
@ -209,12 +197,12 @@ let rec run = (~env, functionCallInfo: functionCallInfo): outputType => {
) )
->E.R2.fmap(r => Dist(r)) ->E.R2.fmap(r => Dist(r))
->OutputLocal.fromResult ->OutputLocal.fromResult
| ToDistCombination(Pointwise, algebraicCombination, #Dist(t2)) => | #ToDistCombination(Pointwise, algebraicCombination, #Dist(t2)) =>
dist dist
->GenericDist.pointwiseCombination(~toPointSetFn, ~algebraicCombination, ~t2) ->GenericDist.pointwiseCombination(~toPointSetFn, ~algebraicCombination, ~t2)
->E.R2.fmap(r => Dist(r)) ->E.R2.fmap(r => Dist(r))
->OutputLocal.fromResult ->OutputLocal.fromResult
| ToDistCombination(Pointwise, algebraicCombination, #Float(f)) => | #ToDistCombination(Pointwise, algebraicCombination, #Float(f)) =>
dist dist
->GenericDist.pointwiseCombinationFloat(~toPointSetFn, ~algebraicCombination, ~f) ->GenericDist.pointwiseCombinationFloat(~toPointSetFn, ~algebraicCombination, ~f)
->E.R2.fmap(r => Dist(r)) ->E.R2.fmap(r => Dist(r))
@ -225,8 +213,7 @@ let rec run = (~env, functionCallInfo: functionCallInfo): outputType => {
switch functionCallInfo { switch functionCallInfo {
| FromDist(subFnName, dist) => fromDistFn(subFnName, dist) | FromDist(subFnName, dist) => fromDistFn(subFnName, dist)
| FromFloat(subFnName, float) => | FromFloat(subFnName, x) => reCall(~functionCallInfo=FromFloat(subFnName, x), ())
reCall(~functionCallInfo=FromDist(subFnName, GenericDist.fromFloat(float)), ())
| Mixture(dists) => | Mixture(dists) =>
dists dists
->GenericDist.mixture(~scaleMultiplyFn=scaleMultiply, ~pointwiseAddFn=pointwiseAdd) ->GenericDist.mixture(~scaleMultiplyFn=scaleMultiply, ~pointwiseAddFn=pointwiseAdd)
@ -278,13 +265,16 @@ module Constructors = {
let pdf = (~env, dist, f) => C.pdf(dist, f)->run(~env)->toFloatR let pdf = (~env, dist, f) => C.pdf(dist, f)->run(~env)->toFloatR
let normalize = (~env, dist) => C.normalize(dist)->run(~env)->toDistR let normalize = (~env, dist) => C.normalize(dist)->run(~env)->toDistR
let isNormalized = (~env, dist) => C.isNormalized(dist)->run(~env)->toBoolR let isNormalized = (~env, dist) => C.isNormalized(dist)->run(~env)->toBoolR
let klDivergence = (~env, dist1, dist2) => C.klDivergence(dist1, dist2)->run(~env)->toFloatR module LogScore = {
let logScoreWithPointResolution = ( let distEstimateDistAnswer = (~env, estimate, answer) =>
~env, C.LogScore.distEstimateDistAnswer(estimate, answer)->run(~env)->toFloatR
~prediction: DistributionTypes.genericDist, let distEstimateDistAnswerWithPrior = (~env, estimate, answer, prior) =>
~answer: float, C.LogScore.distEstimateDistAnswerWithPrior(estimate, answer, prior)->run(~env)->toFloatR
~prior: option<DistributionTypes.genericDist>, let distEstimateScalarAnswer = (~env, estimate, answer) =>
) => C.logScoreWithPointResolution(~prediction, ~answer, ~prior)->run(~env)->toFloatR C.LogScore.distEstimateScalarAnswer(estimate, answer)->run(~env)->toFloatR
let distEstimateScalarAnswerWithPrior = (~env, estimate, answer, prior) =>
C.LogScore.distEstimateScalarAnswerWithPrior(estimate, answer, prior)->run(~env)->toFloatR
}
let toPointSet = (~env, dist) => C.toPointSet(dist)->run(~env)->toDistR let toPointSet = (~env, dist) => C.toPointSet(dist)->run(~env)->toDistR
let toSampleSet = (~env, dist, n) => C.toSampleSet(dist, n)->run(~env)->toDistR let toSampleSet = (~env, dist, n) => C.toSampleSet(dist, n)->run(~env)->toDistR
let fromSamples = (~env, xs) => C.fromSamples(xs)->run(~env)->toDistR let fromSamples = (~env, xs) => C.fromSamples(xs)->run(~env)->toDistR

View File

@ -1,11 +1,5 @@
@genType @genType
type env = { let defaultEnv: GenericDist.env
sampleCount: int,
xyPointLength: int,
}
@genType
let defaultEnv: env
open DistributionTypes open DistributionTypes
@ -19,15 +13,18 @@ type outputType =
| GenDistError(error) | GenDistError(error)
@genType @genType
let run: (~env: env, DistributionTypes.DistributionOperation.genericFunctionCallInfo) => outputType let run: (
~env: GenericDist.env,
DistributionTypes.DistributionOperation.genericFunctionCallInfo,
) => outputType
let runFromDist: ( let runFromDist: (
~env: env, ~env: GenericDist.env,
~functionCallInfo: DistributionTypes.DistributionOperation.fromDist, ~functionCallInfo: DistributionTypes.DistributionOperation.fromDist,
genericDist, genericDist,
) => outputType ) => outputType
let runFromFloat: ( let runFromFloat: (
~env: env, ~env: GenericDist.env,
~functionCallInfo: DistributionTypes.DistributionOperation.fromDist, ~functionCallInfo: DistributionTypes.DistributionOperation.fromFloat,
float, float,
) => outputType ) => outputType
@ -42,79 +39,147 @@ module Output: {
let toBool: t => option<bool> let toBool: t => option<bool>
let toBoolR: t => result<bool, error> let toBoolR: t => result<bool, error>
let toError: t => option<error> let toError: t => option<error>
let fmap: (~env: env, t, DistributionTypes.DistributionOperation.singleParamaterFunction) => t let fmap: (
~env: GenericDist.env,
t,
DistributionTypes.DistributionOperation.singleParamaterFunction,
) => t
} }
module Constructors: { module Constructors: {
@genType @genType
let mean: (~env: env, genericDist) => result<float, error> let mean: (~env: GenericDist.env, genericDist) => result<float, error>
@genType @genType
let stdev: (~env: env, genericDist) => result<float, error> let stdev: (~env: GenericDist.env, genericDist) => result<float, error>
@genType @genType
let variance: (~env: env, genericDist) => result<float, error> let variance: (~env: GenericDist.env, genericDist) => result<float, error>
@genType @genType
let sample: (~env: env, genericDist) => result<float, error> let sample: (~env: GenericDist.env, genericDist) => result<float, error>
@genType @genType
let cdf: (~env: env, genericDist, float) => result<float, error> let cdf: (~env: GenericDist.env, genericDist, float) => result<float, error>
@genType @genType
let inv: (~env: env, genericDist, float) => result<float, error> let inv: (~env: GenericDist.env, genericDist, float) => result<float, error>
@genType @genType
let pdf: (~env: env, genericDist, float) => result<float, error> let pdf: (~env: GenericDist.env, genericDist, float) => result<float, error>
@genType @genType
let normalize: (~env: env, genericDist) => result<genericDist, error> let normalize: (~env: GenericDist.env, genericDist) => result<genericDist, error>
@genType @genType
let isNormalized: (~env: env, genericDist) => result<bool, error> let isNormalized: (~env: GenericDist.env, genericDist) => result<bool, error>
module LogScore: {
@genType @genType
let klDivergence: (~env: env, genericDist, genericDist) => result<float, error> let distEstimateDistAnswer: (
@genType ~env: GenericDist.env,
let logScoreWithPointResolution: ( genericDist,
~env: env, genericDist,
~prediction: genericDist,
~answer: float,
~prior: option<genericDist>,
) => result<float, error> ) => result<float, error>
@genType @genType
let toPointSet: (~env: env, genericDist) => result<genericDist, error> let distEstimateDistAnswerWithPrior: (
~env: GenericDist.env,
genericDist,
genericDist,
genericDist,
) => result<float, error>
@genType @genType
let toSampleSet: (~env: env, genericDist, int) => result<genericDist, error> let distEstimateScalarAnswer: (
~env: GenericDist.env,
genericDist,
float,
) => result<float, error>
@genType @genType
let fromSamples: (~env: env, SampleSetDist.t) => result<genericDist, error> let distEstimateScalarAnswerWithPrior: (
@genType ~env: GenericDist.env,
let truncate: (~env: env, genericDist, option<float>, option<float>) => result<genericDist, error> genericDist,
@genType float,
let inspect: (~env: env, genericDist) => result<genericDist, error> genericDist,
@genType ) => result<float, error>
let toString: (~env: env, genericDist) => result<string, error> }
@genType @genType
let toSparkline: (~env: env, genericDist, int) => result<string, error> let toPointSet: (~env: GenericDist.env, genericDist) => result<genericDist, error>
@genType @genType
let algebraicAdd: (~env: env, genericDist, genericDist) => result<genericDist, error> let toSampleSet: (~env: GenericDist.env, genericDist, int) => result<genericDist, error>
@genType @genType
let algebraicMultiply: (~env: env, genericDist, genericDist) => result<genericDist, error> let fromSamples: (~env: GenericDist.env, SampleSetDist.t) => result<genericDist, error>
@genType @genType
let algebraicDivide: (~env: env, genericDist, genericDist) => result<genericDist, error> let truncate: (
@genType ~env: GenericDist.env,
let algebraicSubtract: (~env: env, genericDist, genericDist) => result<genericDist, error> genericDist,
@genType option<float>,
let algebraicLogarithm: (~env: env, genericDist, genericDist) => result<genericDist, error> option<float>,
@genType ) => result<genericDist, error>
let algebraicPower: (~env: env, genericDist, genericDist) => result<genericDist, error> @genType
@genType let inspect: (~env: GenericDist.env, genericDist) => result<genericDist, error>
let scaleLogarithm: (~env: env, genericDist, float) => result<genericDist, error> @genType
@genType let toString: (~env: GenericDist.env, genericDist) => result<string, error>
let scaleMultiply: (~env: env, genericDist, float) => result<genericDist, error> @genType
@genType let toSparkline: (~env: GenericDist.env, genericDist, int) => result<string, error>
let scalePower: (~env: env, genericDist, float) => result<genericDist, error> @genType
@genType let algebraicAdd: (~env: GenericDist.env, genericDist, genericDist) => result<genericDist, error>
let pointwiseAdd: (~env: env, genericDist, genericDist) => result<genericDist, error> @genType
@genType let algebraicMultiply: (
let pointwiseMultiply: (~env: env, genericDist, genericDist) => result<genericDist, error> ~env: GenericDist.env,
@genType genericDist,
let pointwiseDivide: (~env: env, genericDist, genericDist) => result<genericDist, error> genericDist,
@genType ) => result<genericDist, error>
let pointwiseSubtract: (~env: env, genericDist, genericDist) => result<genericDist, error> @genType
@genType let algebraicDivide: (
let pointwiseLogarithm: (~env: env, genericDist, genericDist) => result<genericDist, error> ~env: GenericDist.env,
@genType genericDist,
let pointwisePower: (~env: env, genericDist, genericDist) => result<genericDist, error> genericDist,
) => result<genericDist, error>
@genType
let algebraicSubtract: (
~env: GenericDist.env,
genericDist,
genericDist,
) => result<genericDist, error>
@genType
let algebraicLogarithm: (
~env: GenericDist.env,
genericDist,
genericDist,
) => result<genericDist, error>
@genType
let algebraicPower: (
~env: GenericDist.env,
genericDist,
genericDist,
) => result<genericDist, error>
@genType
let scaleLogarithm: (~env: GenericDist.env, genericDist, float) => result<genericDist, error>
@genType
let scaleMultiply: (~env: GenericDist.env, genericDist, float) => result<genericDist, error>
@genType
let scalePower: (~env: GenericDist.env, genericDist, float) => result<genericDist, error>
@genType
let pointwiseAdd: (~env: GenericDist.env, genericDist, genericDist) => result<genericDist, error>
@genType
let pointwiseMultiply: (
~env: GenericDist.env,
genericDist,
genericDist,
) => result<genericDist, error>
@genType
let pointwiseDivide: (
~env: GenericDist.env,
genericDist,
genericDist,
) => result<genericDist, error>
@genType
let pointwiseSubtract: (
~env: GenericDist.env,
genericDist,
genericDist,
) => result<genericDist, error>
@genType
let pointwiseLogarithm: (
~env: GenericDist.env,
genericDist,
genericDist,
) => result<genericDist, error>
@genType
let pointwisePower: (
~env: GenericDist.env,
genericDist,
genericDist,
) => result<genericDist, error>
} }

View File

@ -98,61 +98,86 @@ module DistributionOperation = {
| ToString | ToString
| ToSparkline(int) | ToSparkline(int)
type toScore = KLDivergence(genericDist) | LogScore(float, option<genericDist>) type genericDistOrScalar = Score_Dist(genericDist) | Score_Scalar(float)
type fromDist = type toScore = LogScore(genericDistOrScalar, option<genericDist>)
| ToFloat(toFloat)
| ToDist(toDist) type fromFloat = [
| ToScore(toScore) | #ToFloat(toFloat)
| ToDistCombination(direction, Operation.Algebraic.t, [#Dist(genericDist) | #Float(float)]) | #ToDist(toDist)
| ToString(toString) | #ToDistCombination(direction, Operation.Algebraic.t, [#Dist(genericDist) | #Float(float)])
| ToBool(toBool) | #ToString(toString)
| #ToBool(toBool)
]
type fromDist = [
| fromFloat
| #ToScore(toScore)
]
type singleParamaterFunction = type singleParamaterFunction =
| FromDist(fromDist) | FromDist(fromDist)
| FromFloat(fromDist) | FromFloat(fromFloat)
type genericFunctionCallInfo = type genericFunctionCallInfo =
| FromDist(fromDist, genericDist) | FromDist(fromDist, genericDist)
| FromFloat(fromDist, float) | FromFloat(fromFloat, float)
| FromSamples(array<float>) | FromSamples(array<float>)
| Mixture(array<(genericDist, float)>) | Mixture(array<(genericDist, float)>)
let distCallToString = (distFunction: fromDist): string => let floatCallToString = (floatFunction: fromFloat): string =>
switch distFunction { switch floatFunction {
| ToFloat(#Cdf(r)) => `cdf(${E.Float.toFixed(r)})` | #ToFloat(#Cdf(r)) => `cdf(${E.Float.toFixed(r)})`
| ToFloat(#Inv(r)) => `inv(${E.Float.toFixed(r)})` | #ToFloat(#Inv(r)) => `inv(${E.Float.toFixed(r)})`
| ToFloat(#Mean) => `mean` | #ToFloat(#Mean) => `mean`
| ToFloat(#Min) => `min` | #ToFloat(#Min) => `min`
| ToFloat(#Max) => `max` | #ToFloat(#Max) => `max`
| ToFloat(#Stdev) => `stdev` | #ToFloat(#Stdev) => `stdev`
| ToFloat(#Variance) => `variance` | #ToFloat(#Variance) => `variance`
| ToFloat(#Mode) => `mode` | #ToFloat(#Mode) => `mode`
| ToFloat(#Pdf(r)) => `pdf(${E.Float.toFixed(r)})` | #ToFloat(#Pdf(r)) => `pdf(${E.Float.toFixed(r)})`
| ToFloat(#Sample) => `sample` | #ToFloat(#Sample) => `sample`
| ToFloat(#IntegralSum) => `integralSum` | #ToFloat(#IntegralSum) => `integralSum`
| ToScore(KLDivergence(_)) => `klDivergence` | #ToDist(Normalize) => `normalize`
| ToScore(LogScore(x, _)) => `logScore against ${E.Float.toFixed(x)}` | #ToDist(ToPointSet) => `toPointSet`
| ToDist(Normalize) => `normalize` | #ToDist(ToSampleSet(r)) => `toSampleSet(${E.I.toString(r)})`
| ToDist(ToPointSet) => `toPointSet` | #ToDist(Truncate(_, _)) => `truncate`
| ToDist(ToSampleSet(r)) => `toSampleSet(${E.I.toString(r)})` | #ToDist(Inspect) => `inspect`
| ToDist(Truncate(_, _)) => `truncate` | #ToDist(Scale(#Power, r)) => `scalePower(${E.Float.toFixed(r)})`
| ToDist(Inspect) => `inspect` | #ToDist(Scale(#Multiply, r)) => `scaleMultiply(${E.Float.toFixed(r)})`
| ToDist(Scale(#Power, r)) => `scalePower(${E.Float.toFixed(r)})` | #ToDist(Scale(#Logarithm, r)) => `scaleLog(${E.Float.toFixed(r)})`
| ToDist(Scale(#Multiply, r)) => `scaleMultiply(${E.Float.toFixed(r)})` | #ToDist(Scale(#LogarithmWithThreshold(eps), r)) =>
| ToDist(Scale(#Logarithm, r)) => `scaleLog(${E.Float.toFixed(r)})`
| ToDist(Scale(#LogarithmWithThreshold(eps), r)) =>
`scaleLogWithThreshold(${E.Float.toFixed(r)}, epsilon=${E.Float.toFixed(eps)})` `scaleLogWithThreshold(${E.Float.toFixed(r)}, epsilon=${E.Float.toFixed(eps)})`
| ToString(ToString) => `toString` | #ToString(ToString) => `toString`
| ToString(ToSparkline(n)) => `sparkline(${E.I.toString(n)})` | #ToString(ToSparkline(n)) => `sparkline(${E.I.toString(n)})`
| ToBool(IsNormalized) => `isNormalized` | #ToBool(IsNormalized) => `isNormalized`
| ToDistCombination(Algebraic(_), _, _) => `algebraic` | #ToDistCombination(Algebraic(_), _, _) => `algebraic`
| ToDistCombination(Pointwise, _, _) => `pointwise` | #ToDistCombination(Pointwise, _, _) => `pointwise`
}
let distCallToString = (
distFunction: [
| #ToFloat(toFloat)
| #ToDist(toDist)
| #ToDistCombination(direction, Operation.Algebraic.t, [#Dist(genericDist) | #Float(float)])
| #ToString(toString)
| #ToBool(toBool)
| #ToScore(toScore)
],
): string =>
switch distFunction {
| #ToScore(_) => `logScore`
| #ToFloat(x) => floatCallToString(#ToFloat(x))
| #ToDist(x) => floatCallToString(#ToDist(x))
| #ToString(x) => floatCallToString(#ToString(x))
| #ToBool(x) => floatCallToString(#ToBool(x))
| #ToDistCombination(x, y, z) => floatCallToString(#ToDistCombination(x, y, z))
} }
let toString = (d: genericFunctionCallInfo): string => let toString = (d: genericFunctionCallInfo): string =>
switch d { switch d {
| FromDist(f, _) | FromFloat(f, _) => distCallToString(f) | FromDist(f, _) => distCallToString(f)
| FromFloat(f, _) => floatCallToString(f)
| Mixture(_) => `mixture` | Mixture(_) => `mixture`
| FromSamples(_) => `fromSamples` | FromSamples(_) => `fromSamples`
} }
@ -162,80 +187,93 @@ module Constructors = {
module UsingDists = { module UsingDists = {
@genType @genType
let mean = (dist): t => FromDist(ToFloat(#Mean), dist) let mean = (dist): t => FromDist(#ToFloat(#Mean), dist)
let stdev = (dist): t => FromDist(ToFloat(#Stdev), dist) let stdev = (dist): t => FromDist(#ToFloat(#Stdev), dist)
let variance = (dist): t => FromDist(ToFloat(#Variance), dist) let variance = (dist): t => FromDist(#ToFloat(#Variance), dist)
let sample = (dist): t => FromDist(ToFloat(#Sample), dist) let sample = (dist): t => FromDist(#ToFloat(#Sample), dist)
let cdf = (dist, x): t => FromDist(ToFloat(#Cdf(x)), dist) let cdf = (dist, x): t => FromDist(#ToFloat(#Cdf(x)), dist)
let inv = (dist, x): t => FromDist(ToFloat(#Inv(x)), dist) let inv = (dist, x): t => FromDist(#ToFloat(#Inv(x)), dist)
let pdf = (dist, x): t => FromDist(ToFloat(#Pdf(x)), dist) let pdf = (dist, x): t => FromDist(#ToFloat(#Pdf(x)), dist)
let normalize = (dist): t => FromDist(ToDist(Normalize), dist) let normalize = (dist): t => FromDist(#ToDist(Normalize), dist)
let isNormalized = (dist): t => FromDist(ToBool(IsNormalized), dist) let isNormalized = (dist): t => FromDist(#ToBool(IsNormalized), dist)
let toPointSet = (dist): t => FromDist(ToDist(ToPointSet), dist) let toPointSet = (dist): t => FromDist(#ToDist(ToPointSet), dist)
let toSampleSet = (dist, r): t => FromDist(ToDist(ToSampleSet(r)), dist) let toSampleSet = (dist, r): t => FromDist(#ToDist(ToSampleSet(r)), dist)
let fromSamples = (xs): t => FromSamples(xs) let fromSamples = (xs): t => FromSamples(xs)
let truncate = (dist, left, right): t => FromDist(ToDist(Truncate(left, right)), dist) let truncate = (dist, left, right): t => FromDist(#ToDist(Truncate(left, right)), dist)
let inspect = (dist): t => FromDist(ToDist(Inspect), dist) let inspect = (dist): t => FromDist(#ToDist(Inspect), dist)
let klDivergence = (dist1, dist2): t => FromDist(ToScore(KLDivergence(dist2)), dist1) module LogScore = {
let logScoreWithPointResolution = (~prediction, ~answer, ~prior): t => FromDist( let distEstimateDistAnswer = (estimate, answer): t => FromDist(
ToScore(LogScore(answer, prior)), #ToScore(LogScore(Score_Dist(answer), None)),
prediction, estimate,
) )
let scaleMultiply = (dist, n): t => FromDist(ToDist(Scale(#Multiply, n)), dist) let distEstimateDistAnswerWithPrior = (estimate, answer, prior): t => FromDist(
let scalePower = (dist, n): t => FromDist(ToDist(Scale(#Power, n)), dist) #ToScore(LogScore(Score_Dist(answer), Some(prior))),
let scaleLogarithm = (dist, n): t => FromDist(ToDist(Scale(#Logarithm, n)), dist) estimate,
)
let distEstimateScalarAnswer = (estimate, answer): t => FromDist(
#ToScore(LogScore(Score_Scalar(answer), None)),
estimate,
)
let distEstimateScalarAnswerWithPrior = (estimate, answer, prior): t => FromDist(
#ToScore(LogScore(Score_Scalar(answer), Some(prior))),
estimate,
)
}
let scaleMultiply = (dist, n): t => FromDist(#ToDist(Scale(#Multiply, n)), dist)
let scalePower = (dist, n): t => FromDist(#ToDist(Scale(#Power, n)), dist)
let scaleLogarithm = (dist, n): t => FromDist(#ToDist(Scale(#Logarithm, n)), dist)
let scaleLogarithmWithThreshold = (dist, n, eps): t => FromDist( let scaleLogarithmWithThreshold = (dist, n, eps): t => FromDist(
ToDist(Scale(#LogarithmWithThreshold(eps), n)), #ToDist(Scale(#LogarithmWithThreshold(eps), n)),
dist, dist,
) )
let toString = (dist): t => FromDist(ToString(ToString), dist) let toString = (dist): t => FromDist(#ToString(ToString), dist)
let toSparkline = (dist, n): t => FromDist(ToString(ToSparkline(n)), dist) let toSparkline = (dist, n): t => FromDist(#ToString(ToSparkline(n)), dist)
let algebraicAdd = (dist1, dist2: genericDist): t => FromDist( let algebraicAdd = (dist1, dist2: genericDist): t => FromDist(
ToDistCombination(Algebraic(AsDefault), #Add, #Dist(dist2)), #ToDistCombination(Algebraic(AsDefault), #Add, #Dist(dist2)),
dist1, dist1,
) )
let algebraicMultiply = (dist1, dist2): t => FromDist( let algebraicMultiply = (dist1, dist2): t => FromDist(
ToDistCombination(Algebraic(AsDefault), #Multiply, #Dist(dist2)), #ToDistCombination(Algebraic(AsDefault), #Multiply, #Dist(dist2)),
dist1, dist1,
) )
let algebraicDivide = (dist1, dist2): t => FromDist( let algebraicDivide = (dist1, dist2): t => FromDist(
ToDistCombination(Algebraic(AsDefault), #Divide, #Dist(dist2)), #ToDistCombination(Algebraic(AsDefault), #Divide, #Dist(dist2)),
dist1, dist1,
) )
let algebraicSubtract = (dist1, dist2): t => FromDist( let algebraicSubtract = (dist1, dist2): t => FromDist(
ToDistCombination(Algebraic(AsDefault), #Subtract, #Dist(dist2)), #ToDistCombination(Algebraic(AsDefault), #Subtract, #Dist(dist2)),
dist1, dist1,
) )
let algebraicLogarithm = (dist1, dist2): t => FromDist( let algebraicLogarithm = (dist1, dist2): t => FromDist(
ToDistCombination(Algebraic(AsDefault), #Logarithm, #Dist(dist2)), #ToDistCombination(Algebraic(AsDefault), #Logarithm, #Dist(dist2)),
dist1, dist1,
) )
let algebraicPower = (dist1, dist2): t => FromDist( let algebraicPower = (dist1, dist2): t => FromDist(
ToDistCombination(Algebraic(AsDefault), #Power, #Dist(dist2)), #ToDistCombination(Algebraic(AsDefault), #Power, #Dist(dist2)),
dist1, dist1,
) )
let pointwiseAdd = (dist1, dist2): t => FromDist( let pointwiseAdd = (dist1, dist2): t => FromDist(
ToDistCombination(Pointwise, #Add, #Dist(dist2)), #ToDistCombination(Pointwise, #Add, #Dist(dist2)),
dist1, dist1,
) )
let pointwiseMultiply = (dist1, dist2): t => FromDist( let pointwiseMultiply = (dist1, dist2): t => FromDist(
ToDistCombination(Pointwise, #Multiply, #Dist(dist2)), #ToDistCombination(Pointwise, #Multiply, #Dist(dist2)),
dist1, dist1,
) )
let pointwiseDivide = (dist1, dist2): t => FromDist( let pointwiseDivide = (dist1, dist2): t => FromDist(
ToDistCombination(Pointwise, #Divide, #Dist(dist2)), #ToDistCombination(Pointwise, #Divide, #Dist(dist2)),
dist1, dist1,
) )
let pointwiseSubtract = (dist1, dist2): t => FromDist( let pointwiseSubtract = (dist1, dist2): t => FromDist(
ToDistCombination(Pointwise, #Subtract, #Dist(dist2)), #ToDistCombination(Pointwise, #Subtract, #Dist(dist2)),
dist1, dist1,
) )
let pointwiseLogarithm = (dist1, dist2): t => FromDist( let pointwiseLogarithm = (dist1, dist2): t => FromDist(
ToDistCombination(Pointwise, #Logarithm, #Dist(dist2)), #ToDistCombination(Pointwise, #Logarithm, #Dist(dist2)),
dist1, dist1,
) )
let pointwisePower = (dist1, dist2): t => FromDist( let pointwisePower = (dist1, dist2): t => FromDist(
ToDistCombination(Pointwise, #Power, #Dist(dist2)), #ToDistCombination(Pointwise, #Power, #Dist(dist2)),
dist1, dist1,
) )
} }

View File

@ -6,6 +6,11 @@ type toSampleSetFn = t => result<SampleSetDist.t, error>
type scaleMultiplyFn = (t, float) => result<t, error> type scaleMultiplyFn = (t, float) => result<t, error>
type pointwiseAddFn = (t, t) => result<t, error> type pointwiseAddFn = (t, t) => result<t, error>
type env = {
sampleCount: int,
xyPointLength: int,
}
let isPointSet = (t: t) => let isPointSet = (t: t) =>
switch t { switch t {
| PointSet(_) => true | PointSet(_) => true
@ -61,46 +66,6 @@ let integralEndY = (t: t): float =>
let isNormalized = (t: t): bool => Js.Math.abs_float(integralEndY(t) -. 1.0) < 1e-7 let isNormalized = (t: t): bool => Js.Math.abs_float(integralEndY(t) -. 1.0) < 1e-7
module Score = {
let klDivergence = (prediction, answer, ~toPointSetFn: toPointSetFn): result<float, error> => {
let pointSets = E.R.merge(toPointSetFn(prediction), toPointSetFn(answer))
pointSets |> E.R2.bind(((predi, ans)) =>
PointSetDist.T.klDivergence(predi, ans)->E.R2.errMap(x => DistributionTypes.OperationError(x))
)
}
let logScoreWithPointResolution = (
~prediction: DistributionTypes.genericDist,
~answer: float,
~prior: option<DistributionTypes.genericDist>,
~toPointSetFn: toPointSetFn,
): result<float, error> => {
switch prior {
| Some(prior') =>
E.R.merge(toPointSetFn(prior'), toPointSetFn(prediction))->E.R.bind(((
prior'',
prediction'',
)) =>
PointSetDist.T.logScoreWithPointResolution(
~prediction=prediction'',
~answer,
~prior=prior''->Some,
)->E.R2.errMap(x => DistributionTypes.OperationError(x))
)
| None =>
prediction
->toPointSetFn
->E.R.bind(x =>
PointSetDist.T.logScoreWithPointResolution(
~prediction=x,
~answer,
~prior=None,
)->E.R2.errMap(x => DistributionTypes.OperationError(x))
)
}
}
}
let toFloatOperation = ( let toFloatOperation = (
t, t,
~toPointSetFn: toPointSetFn, ~toPointSetFn: toPointSetFn,
@ -171,6 +136,70 @@ let toPointSet = (
} }
} }
module Score = {
type genericDistOrScalar = DistributionTypes.DistributionOperation.genericDistOrScalar
let argsMake = (~esti: t, ~answ: genericDistOrScalar, ~prior: option<t>, ~env: env): result<
PointSetDist_Scoring.scoreArgs,
error,
> => {
let toPointSetFn = t =>
toPointSet(
t,
~xyPointLength=env.xyPointLength,
~sampleCount=env.sampleCount,
~xSelection=#ByWeight,
(),
)
let prior': option<result<PointSetTypes.pointSetDist, error>> = switch prior {
| None => None
| Some(d) => toPointSetFn(d)->Some
}
let twoDists = (~toPointSetFn, esti': t, answ': t): result<
(PointSetTypes.pointSetDist, PointSetTypes.pointSetDist),
error,
> => E.R.merge(toPointSetFn(esti'), toPointSetFn(answ'))
switch (esti, answ, prior') {
| (esti', Score_Dist(answ'), None) =>
twoDists(~toPointSetFn, esti', answ')->E.R2.fmap(((esti'', answ'')) =>
{estimate: esti'', answer: answ'', prior: None}->PointSetDist_Scoring.DistAnswer
)
| (esti', Score_Dist(answ'), Some(Ok(prior''))) =>
twoDists(~toPointSetFn, esti', answ')->E.R2.fmap(((esti'', answ'')) =>
{
estimate: esti'',
answer: answ'',
prior: Some(prior''),
}->PointSetDist_Scoring.DistAnswer
)
| (esti', Score_Scalar(answ'), None) =>
toPointSetFn(esti')->E.R2.fmap(esti'' =>
{
estimate: esti'',
answer: answ',
prior: None,
}->PointSetDist_Scoring.ScalarAnswer
)
| (esti', Score_Scalar(answ'), Some(Ok(prior''))) =>
toPointSetFn(esti')->E.R2.fmap(esti'' =>
{
estimate: esti'',
answer: answ',
prior: Some(prior''),
}->PointSetDist_Scoring.ScalarAnswer
)
| (_, _, Some(Error(err))) => err->Error
}
}
let logScore = (~estimate: t, ~answer: genericDistOrScalar, ~prior: option<t>, ~env: env): result<
float,
error,
> =>
argsMake(~esti=estimate, ~answ=answer, ~prior, ~env)->E.R.bind(x =>
x->PointSetDist.logScore->E.R2.errMap(y => DistributionTypes.OperationError(y))
)
}
/* /*
PointSetDist.toSparkline calls "downsampleEquallyOverX", which downsamples it to n=bucketCount. PointSetDist.toSparkline calls "downsampleEquallyOverX", which downsamples it to n=bucketCount.
It first needs a pointSetDist, so we convert to a pointSetDist. In this process we want the It first needs a pointSetDist, so we convert to a pointSetDist. In this process we want the

View File

@ -5,6 +5,9 @@ type toSampleSetFn = t => result<SampleSetDist.t, error>
type scaleMultiplyFn = (t, float) => result<t, error> type scaleMultiplyFn = (t, float) => result<t, error>
type pointwiseAddFn = (t, t) => result<t, error> type pointwiseAddFn = (t, t) => result<t, error>
@genType
type env = {sampleCount: int, xyPointLength: int}
let sampleN: (t, int) => array<float> let sampleN: (t, int) => array<float>
let sample: t => float let sample: t => float
@ -25,12 +28,11 @@ let toFloatOperation: (
) => result<float, error> ) => result<float, error>
module Score: { module Score: {
let klDivergence: (t, t, ~toPointSetFn: toPointSetFn) => result<float, error> let logScore: (
let logScoreWithPointResolution: ( ~estimate: t,
~prediction: t, ~answer: DistributionTypes.DistributionOperation.genericDistOrScalar,
~answer: float,
~prior: option<t>, ~prior: option<t>,
~toPointSetFn: toPointSetFn, ~env: env,
) => result<float, error> ) => result<float, error>
} }

View File

@ -120,7 +120,7 @@ let combinePointwise = (
let interpolator = XYShape.XtoY.continuousInterpolator(t1.interpolation, extrapolation) let interpolator = XYShape.XtoY.continuousInterpolator(t1.interpolation, extrapolation)
combiner(fn, interpolator, t1.xyShape, t2.xyShape)->E.R2.fmap(x => combiner(interpolator, fn, t1.xyShape, t2.xyShape)->E.R2.fmap(x =>
make(~integralSumCache=combinedIntegralSum, x) make(~integralSumCache=combinedIntegralSum, x)
) )
} }
@ -270,20 +270,6 @@ module T = Dist({
} }
let variance = (t: t): float => let variance = (t: t): float =>
XYShape.Analysis.getVarianceDangerously(t, mean, Analysis.getMeanOfSquares) XYShape.Analysis.getVarianceDangerously(t, mean, Analysis.getMeanOfSquares)
let klDivergence = (prediction: t, answer: t) => {
let newShape = XYShape.PointwiseCombination.combineAlongSupportOfSecondArgument(
PointSetDist_Scoring.KLDivergence.integrand,
prediction.xyShape,
answer.xyShape,
)
newShape->E.R2.fmap(x => x->make->integralEndY)
}
let logScoreWithPointResolution = (~prediction: t, ~answer: float, ~prior: option<t>) => {
let priorPdf = prior->E.O2.fmap((shape, x) => XYShape.XtoY.linear(x, shape.xyShape))
let predictionPdf = x => XYShape.XtoY.linear(x, prediction.xyShape)
PointSetDist_Scoring.LogScoreWithPointResolution.score(~priorPdf, ~predictionPdf, ~answer)
}
}) })
let isNormalized = (t: t): bool => { let isNormalized = (t: t): bool => {

View File

@ -49,7 +49,7 @@ let combinePointwise = (
// TODO: does it ever make sense to pointwise combine the integrals here? // TODO: does it ever make sense to pointwise combine the integrals here?
// It could be done for pointwise additions, but is that ever needed? // It could be done for pointwise additions, but is that ever needed?
combiner(fn, XYShape.XtoY.discreteInterpolator, t1.xyShape, t2.xyShape)->E.R2.fmap(make) combiner(XYShape.XtoY.discreteInterpolator, fn, t1.xyShape, t2.xyShape)->E.R2.fmap(make)
} }
let reduce = ( let reduce = (
@ -222,15 +222,4 @@ module T = Dist({
let getMeanOfSquares = t => t |> shapeMap(XYShape.T.square) |> mean let getMeanOfSquares = t => t |> shapeMap(XYShape.T.square) |> mean
XYShape.Analysis.getVarianceDangerously(t, mean, getMeanOfSquares) XYShape.Analysis.getVarianceDangerously(t, mean, getMeanOfSquares)
} }
let klDivergence = (prediction: t, answer: t) => {
combinePointwise(
~fn=PointSetDist_Scoring.KLDivergence.integrand,
prediction,
answer,
)->E.R2.fmap(integralEndY)
}
let logScoreWithPointResolution = (~prediction: t, ~answer: float, ~prior: option<t>) => {
Error(Operation.NotYetImplemented)
}
}) })

View File

@ -33,12 +33,6 @@ module type dist = {
let mean: t => float let mean: t => float
let variance: t => float let variance: t => float
let klDivergence: (t, t) => result<float, Operation.Error.t>
let logScoreWithPointResolution: (
~prediction: t,
~answer: float,
~prior: option<t>,
) => result<float, Operation.Error.t>
} }
module Dist = (T: dist) => { module Dist = (T: dist) => {
@ -61,9 +55,6 @@ module Dist = (T: dist) => {
let mean = T.mean let mean = T.mean
let variance = T.variance let variance = T.variance
let integralEndY = T.integralEndY let integralEndY = T.integralEndY
let klDivergence = T.klDivergence
let logScoreWithPointResolution = T.logScoreWithPointResolution
let updateIntegralCache = T.updateIntegralCache let updateIntegralCache = T.updateIntegralCache
module Integral = { module Integral = {

View File

@ -302,15 +302,6 @@ module T = Dist({
| _ => XYShape.Analysis.getVarianceDangerously(t, mean, getMeanOfSquares) | _ => XYShape.Analysis.getVarianceDangerously(t, mean, getMeanOfSquares)
} }
} }
let klDivergence = (prediction: t, answer: t) => {
let klDiscretePart = Discrete.T.klDivergence(prediction.discrete, answer.discrete)
let klContinuousPart = Continuous.T.klDivergence(prediction.continuous, answer.continuous)
E.R.merge(klDiscretePart, klContinuousPart)->E.R2.fmap(t => fst(t) +. snd(t))
}
let logScoreWithPointResolution = (~prediction: t, ~answer: float, ~prior: option<t>) => {
Error(Operation.NotYetImplemented)
}
}) })
let combineAlgebraically = (op: Operation.convolutionOperation, t1: t, t2: t): t => { let combineAlgebraically = (op: Operation.convolutionOperation, t1: t, t2: t): t => {

View File

@ -66,6 +66,7 @@ let combineAlgebraically = (op: Operation.convolutionOperation, t1: t, t2: t): t
} }
let combinePointwise = ( let combinePointwise = (
~combiner=XYShape.PointwiseCombination.combine,
~integralSumCachesFn: (float, float) => option<float>=(_, _) => None, ~integralSumCachesFn: (float, float) => option<float>=(_, _) => None,
~integralCachesFn: ( ~integralCachesFn: (
PointSetTypes.continuousShape, PointSetTypes.continuousShape,
@ -78,6 +79,7 @@ let combinePointwise = (
switch (t1, t2) { switch (t1, t2) {
| (Continuous(m1), Continuous(m2)) => | (Continuous(m1), Continuous(m2)) =>
Continuous.combinePointwise( Continuous.combinePointwise(
~combiner,
~integralSumCachesFn, ~integralSumCachesFn,
fn, fn,
m1, m1,
@ -85,6 +87,7 @@ let combinePointwise = (
)->E.R2.fmap(x => PointSetTypes.Continuous(x)) )->E.R2.fmap(x => PointSetTypes.Continuous(x))
| (Discrete(m1), Discrete(m2)) => | (Discrete(m1), Discrete(m2)) =>
Discrete.combinePointwise( Discrete.combinePointwise(
~combiner,
~integralSumCachesFn, ~integralSumCachesFn,
~fn, ~fn,
m1, m1,
@ -195,25 +198,16 @@ module T = Dist({
| Discrete(m) => Discrete.T.variance(m) | Discrete(m) => Discrete.T.variance(m)
| Continuous(m) => Continuous.T.variance(m) | Continuous(m) => Continuous.T.variance(m)
} }
let klDivergence = (prediction: t, answer: t) =>
switch (prediction, answer) {
| (Continuous(t1), Continuous(t2)) => Continuous.T.klDivergence(t1, t2)
| (Discrete(t1), Discrete(t2)) => Discrete.T.klDivergence(t1, t2)
| (m1, m2) => Mixed.T.klDivergence(m1->toMixed, m2->toMixed)
}
let logScoreWithPointResolution = (~prediction: t, ~answer: float, ~prior: option<t>) => {
switch (prior, prediction) {
| (Some(Continuous(t1)), Continuous(t2)) =>
Continuous.T.logScoreWithPointResolution(~prediction=t2, ~answer, ~prior=t1->Some)
| (None, Continuous(t2)) =>
Continuous.T.logScoreWithPointResolution(~prediction=t2, ~answer, ~prior=None)
| _ => Error(Operation.NotYetImplemented)
}
}
}) })
let logScore = (args: PointSetDist_Scoring.scoreArgs): result<float, Operation.Error.t> =>
PointSetDist_Scoring.logScore(
args,
~combineFn=combinePointwise,
~integrateFn=T.Integral.sum,
~toMixedFn=toMixed,
)
let pdf = (f: float, t: t) => { let pdf = (f: float, t: t) => {
let mixedPoint: PointSetTypes.mixedPoint = T.xToY(f, t) let mixedPoint: PointSetTypes.mixedPoint = T.xToY(f, t)
mixedPoint.continuous +. mixedPoint.discrete mixedPoint.continuous +. mixedPoint.discrete

View File

@ -1,46 +1,149 @@
module KLDivergence = { type pointSetDist = PointSetTypes.pointSetDist
type scalar = float
type score = float
type abstractScoreArgs<'a, 'b> = {estimate: 'a, answer: 'b, prior: option<'a>}
type scoreArgs =
| DistAnswer(abstractScoreArgs<pointSetDist, pointSetDist>)
| ScalarAnswer(abstractScoreArgs<pointSetDist, scalar>)
let logFn = Js.Math.log // base e let logFn = Js.Math.log // base e
let integrand = (predictionElement: float, answerElement: float): result< let minusScaledLogOfQuotient = (~esti, ~answ): result<float, Operation.Error.t> => {
let quot = esti /. answ
quot < 0.0 ? Error(Operation.ComplexNumberError) : Ok(-.answ *. logFn(quot))
}
module WithDistAnswer = {
// The Kullback-Leibler divergence
let integrand = (estimateElement: float, answerElement: float): result<
float, float,
Operation.Error.t, Operation.Error.t,
> => > =>
// We decided that negative infinity, not an error at answerElement = 0.0, is a desirable value. // We decided that 0.0, not an error at answerElement = 0.0, is a desirable value.
if answerElement == 0.0 { if answerElement == 0.0 {
Ok(0.0) Ok(0.0)
} else if predictionElement == 0.0 { } else if estimateElement == 0.0 {
Ok(infinity) Ok(infinity)
} else { } else {
let quot = predictionElement /. answerElement minusScaledLogOfQuotient(~esti=estimateElement, ~answ=answerElement)
quot < 0.0 ? Error(Operation.ComplexNumberError) : Ok(-.answerElement *. logFn(quot)) }
let sum = (
~estimate: pointSetDist,
~answer: pointSetDist,
~combineFn,
~integrateFn,
~toMixedFn,
): result<score, Operation.Error.t> => {
let combineAndIntegrate = (estimate, answer) =>
combineFn(integrand, estimate, answer)->E.R2.fmap(integrateFn)
let getMixedSums = (estimate: pointSetDist, answer: pointSetDist) => {
let esti = estimate->toMixedFn
let answ = answer->toMixedFn
switch (
Mixed.T.toContinuous(esti),
Mixed.T.toDiscrete(esti),
Mixed.T.toContinuous(answ),
Mixed.T.toDiscrete(answ),
) {
| (
Some(estiContinuousPart),
Some(estiDiscretePart),
Some(answContinuousPart),
Some(answDiscretePart),
) =>
E.R.merge(
combineAndIntegrate(
PointSetTypes.Discrete(estiDiscretePart),
PointSetTypes.Discrete(answDiscretePart),
),
combineAndIntegrate(Continuous(estiContinuousPart), Continuous(answContinuousPart)),
)
| (_, _, _, _) => `unreachable state`->Operation.Other->Error
} }
} }
module LogScoreWithPointResolution = { switch (estimate, answer) {
let logFn = Js.Math.log | (Continuous(_), Continuous(_))
let score = ( | (Discrete(_), Discrete(_)) =>
~priorPdf: option<float => float>, combineAndIntegrate(estimate, answer)
~predictionPdf: float => float, | (_, _) =>
~answer: float, getMixedSums(estimate, answer)->E.R2.fmap(((discretePart, continuousPart)) =>
): result<float, Operation.Error.t> => { discretePart +. continuousPart
let numerator = answer->predictionPdf )
if numerator < 0.0 { }
}
let sumWithPrior = (
~estimate: pointSetDist,
~answer: pointSetDist,
~prior: pointSetDist,
~combineFn,
~integrateFn,
~toMixedFn,
): result<score, Operation.Error.t> => {
let kl1 = sum(~estimate, ~answer, ~combineFn, ~integrateFn, ~toMixedFn)
let kl2 = sum(~estimate=prior, ~answer, ~combineFn, ~integrateFn, ~toMixedFn)
E.R.merge(kl1, kl2)->E.R2.fmap(((kl1', kl2')) => kl1' -. kl2')
}
}
module WithScalarAnswer = {
let sum = (mp: PointSetTypes.MixedPoint.t): float => mp.continuous +. mp.discrete
let score = (~estimate: pointSetDist, ~answer: scalar): result<score, Operation.Error.t> => {
let _score = (~estimatePdf: float => option<float>, ~answer: float): result<
score,
Operation.Error.t,
> => {
let density = answer->estimatePdf
switch density {
| None => Operation.PdfInvalidError->Error
| Some(density') =>
if density' < 0.0 {
Operation.PdfInvalidError->Error Operation.PdfInvalidError->Error
} else if numerator == 0.0 { } else if density' == 0.0 {
infinity->Ok infinity->Ok
} else { } else {
-.( density'->logFn->(x => -.x)->Ok
switch priorPdf {
| None => numerator->logFn
| Some(f) => {
let priorDensityOfAnswer = f(answer)
if priorDensityOfAnswer == 0.0 {
neg_infinity
} else {
(numerator /. priorDensityOfAnswer)->logFn
} }
} }
} }
)->Ok
let estimatePdf = x =>
switch estimate {
| Continuous(esti) => Continuous.T.xToY(x, esti)->sum->Some
| Discrete(esti) => Discrete.T.xToY(x, esti)->sum->Some
| Mixed(_) => None
}
_score(~estimatePdf, ~answer)
}
let scoreWithPrior = (~estimate: pointSetDist, ~answer: scalar, ~prior: pointSetDist): result<
score,
Operation.Error.t,
> => {
E.R.merge(score(~estimate, ~answer), score(~estimate=prior, ~answer))->E.R2.fmap(((s1, s2)) =>
s1 -. s2
)
} }
} }
let twoGenericDistsToTwoPointSetDists = (~toPointSetFn, estimate, answer): result<
(pointSetDist, pointSetDist),
'e,
> => E.R.merge(toPointSetFn(estimate, ()), toPointSetFn(answer, ()))
let logScore = (args: scoreArgs, ~combineFn, ~integrateFn, ~toMixedFn): result<
score,
Operation.Error.t,
> =>
switch args {
| DistAnswer({estimate, answer, prior: None}) =>
WithDistAnswer.sum(~estimate, ~answer, ~integrateFn, ~combineFn, ~toMixedFn)
| DistAnswer({estimate, answer, prior: Some(prior)}) =>
WithDistAnswer.sumWithPrior(~estimate, ~answer, ~prior, ~integrateFn, ~combineFn, ~toMixedFn)
| ScalarAnswer({estimate, answer, prior: None}) => WithScalarAnswer.score(~estimate, ~answer)
| ScalarAnswer({estimate, answer, prior: Some(prior)}) =>
WithScalarAnswer.scoreWithPrior(~estimate, ~answer, ~prior)
} }

View File

@ -8,6 +8,7 @@ type rec frType =
| FRTypeNumber | FRTypeNumber
| FRTypeNumeric | FRTypeNumeric
| FRTypeDistOrNumber | FRTypeDistOrNumber
| FRTypeDist
| FRTypeLambda | FRTypeLambda
| FRTypeRecord(frTypeRecord) | FRTypeRecord(frTypeRecord)
| FRTypeDict(frType) | FRTypeDict(frType)
@ -41,7 +42,7 @@ and frValueDistOrNumber = FRValueNumber(float) | FRValueDist(DistributionTypes.g
type fnDefinition = { type fnDefinition = {
name: string, name: string,
inputs: array<frType>, inputs: array<frType>,
run: (array<frValue>, DistributionOperation.env) => result<internalExpressionValue, string>, run: (array<frValue>, GenericDist.env) => result<internalExpressionValue, string>,
} }
type function = { type function = {
@ -60,6 +61,7 @@ module FRType = {
switch t { switch t {
| FRTypeNumber => "number" | FRTypeNumber => "number"
| FRTypeNumeric => "numeric" | FRTypeNumeric => "numeric"
| FRTypeDist => "distribution"
| FRTypeDistOrNumber => "distribution|number" | FRTypeDistOrNumber => "distribution|number"
| FRTypeRecord(r) => { | FRTypeRecord(r) => {
let input = ((name, frType): frTypeRecordParam) => `${name}: ${toString(frType)}` let input = ((name, frType): frTypeRecordParam) => `${name}: ${toString(frType)}`
@ -98,6 +100,7 @@ module FRType = {
| (FRTypeDistOrNumber, IEvDistribution(Symbolic(#Float(f)))) => | (FRTypeDistOrNumber, IEvDistribution(Symbolic(#Float(f)))) =>
Some(FRValueDistOrNumber(FRValueNumber(f))) Some(FRValueDistOrNumber(FRValueNumber(f)))
| (FRTypeDistOrNumber, IEvDistribution(f)) => Some(FRValueDistOrNumber(FRValueDist(f))) | (FRTypeDistOrNumber, IEvDistribution(f)) => Some(FRValueDistOrNumber(FRValueDist(f)))
| (FRTypeDist, IEvDistribution(f)) => Some(FRValueDist(f))
| (FRTypeNumeric, IEvNumber(f)) => Some(FRValueNumber(f)) | (FRTypeNumeric, IEvNumber(f)) => Some(FRValueNumber(f))
| (FRTypeNumeric, IEvDistribution(Symbolic(#Float(f)))) => Some(FRValueNumber(f)) | (FRTypeNumeric, IEvDistribution(Symbolic(#Float(f)))) => Some(FRValueNumber(f))
| (FRTypeLambda, IEvLambda(f)) => Some(FRValueLambda(f)) | (FRTypeLambda, IEvLambda(f)) => Some(FRValueLambda(f))
@ -319,7 +322,7 @@ module FnDefinition = {
t.name ++ `(${inputs})` t.name ++ `(${inputs})`
} }
let run = (t: t, args: array<internalExpressionValue>, env: DistributionOperation.env) => { let run = (t: t, args: array<internalExpressionValue>, env: GenericDist.env) => {
let argValues = FRType.matchWithExpressionValueArray(t.inputs, args) let argValues = FRType.matchWithExpressionValueArray(t.inputs, args)
switch argValues { switch argValues {
| Some(values) => t.run(values, env) | Some(values) => t.run(values, env)
@ -374,7 +377,7 @@ module Registry = {
~registry: registry, ~registry: registry,
~fnName: string, ~fnName: string,
~args: array<internalExpressionValue>, ~args: array<internalExpressionValue>,
~env: DistributionOperation.env, ~env: GenericDist.env,
) => { ) => {
let matchToDef = m => Matcher.Registry.matchToDef(registry, m) let matchToDef = m => Matcher.Registry.matchToDef(registry, m)
//Js.log(toSimple(registry)) //Js.log(toSimple(registry))

View File

@ -27,6 +27,12 @@ module Prepare = {
| _ => Error(impossibleError) | _ => Error(impossibleError)
} }
let threeArgs = (inputs: ts): result<ts, err> =>
switch inputs {
| [FRValueRecord([(_, n1), (_, n2), (_, n3)])] => Ok([n1, n2, n3])
| _ => Error(impossibleError)
}
let toArgs = (inputs: ts): result<ts, err> => let toArgs = (inputs: ts): result<ts, err> =>
switch inputs { switch inputs {
| [FRValueRecord(args)] => args->E.A2.fmap(((_, b)) => b)->Ok | [FRValueRecord(args)] => args->E.A2.fmap(((_, b)) => b)->Ok
@ -57,6 +63,16 @@ module Prepare = {
} }
} }
let twoDist = (values: ts): result<
(DistributionTypes.genericDist, DistributionTypes.genericDist),
err,
> => {
switch values {
| [FRValueDist(a1), FRValueDist(a2)] => Ok(a1, a2)
| _ => Error(impossibleError)
}
}
let twoNumbers = (values: ts): result<(float, float), err> => { let twoNumbers = (values: ts): result<(float, float), err> => {
switch values { switch values {
| [FRValueNumber(a1), FRValueNumber(a2)] => Ok(a1, a2) | [FRValueNumber(a1), FRValueNumber(a2)] => Ok(a1, a2)
@ -81,6 +97,11 @@ module Prepare = {
module Record = { module Record = {
let twoDistOrNumber = (values: ts): result<(frValueDistOrNumber, frValueDistOrNumber), err> => let twoDistOrNumber = (values: ts): result<(frValueDistOrNumber, frValueDistOrNumber), err> =>
values->ToValueArray.Record.twoArgs->E.R.bind(twoDistOrNumber) values->ToValueArray.Record.twoArgs->E.R.bind(twoDistOrNumber)
let twoDist = (values: ts): result<
(DistributionTypes.genericDist, DistributionTypes.genericDist),
err,
> => values->ToValueArray.Record.twoArgs->E.R.bind(twoDist)
} }
} }
@ -128,8 +149,7 @@ module Prepare = {
module Process = { module Process = {
module DistOrNumberToDist = { module DistOrNumberToDist = {
module Helpers = { module Helpers = {
let toSampleSet = (r, env: DistributionOperation.env) => let toSampleSet = (r, env: GenericDist.env) => GenericDist.toSampleSetDist(r, env.sampleCount)
GenericDist.toSampleSetDist(r, env.sampleCount)
let mapFnResult = r => let mapFnResult = r =>
switch r { switch r {
@ -166,7 +186,7 @@ module Process = {
let oneValue = ( let oneValue = (
~fn: float => result<DistributionTypes.genericDist, string>, ~fn: float => result<DistributionTypes.genericDist, string>,
~value: frValueDistOrNumber, ~value: frValueDistOrNumber,
~env: DistributionOperation.env, ~env: GenericDist.env,
): result<DistributionTypes.genericDist, string> => { ): result<DistributionTypes.genericDist, string> => {
switch value { switch value {
| FRValueNumber(a1) => fn(a1) | FRValueNumber(a1) => fn(a1)
@ -179,7 +199,7 @@ module Process = {
let twoValues = ( let twoValues = (
~fn: ((float, float)) => result<DistributionTypes.genericDist, string>, ~fn: ((float, float)) => result<DistributionTypes.genericDist, string>,
~values: (frValueDistOrNumber, frValueDistOrNumber), ~values: (frValueDistOrNumber, frValueDistOrNumber),
~env: DistributionOperation.env, ~env: GenericDist.env,
): result<DistributionTypes.genericDist, string> => { ): result<DistributionTypes.genericDist, string> => {
switch values { switch values {
| (FRValueNumber(a1), FRValueNumber(a2)) => fn((a1, a2)) | (FRValueNumber(a1), FRValueNumber(a2)) => fn((a1, a2))

View File

@ -49,7 +49,7 @@ let inputsTodist = (inputs: array<FunctionRegistry_Core.frValue>, makeDist) => {
expressionValue expressionValue
} }
let registry = [ let registryStart = [
Function.make( Function.make(
~name="toContinuousPointSet", ~name="toContinuousPointSet",
~definitions=[ ~definitions=[
@ -510,3 +510,67 @@ to(5,10)
(), (),
), ),
] ]
let runScoring = (estimate, answer, prior, env) => {
GenericDist.Score.logScore(~estimate, ~answer, ~prior, ~env)
->E.R2.fmap(FunctionRegistry_Helpers.Wrappers.evNumber)
->E.R2.errMap(DistributionTypes.Error.toString)
}
let scoreFunctions = [
Function.make(
~name="Score",
~definitions=[
FnDefinition.make(
~name="logScore",
~inputs=[
FRTypeRecord([
("estimate", FRTypeDist),
("answer", FRTypeDistOrNumber),
("prior", FRTypeDist),
]),
],
~run=(inputs, env) => {
switch FunctionRegistry_Helpers.Prepare.ToValueArray.Record.threeArgs(inputs) {
| Ok([FRValueDist(estimate), FRValueDistOrNumber(FRValueDist(d)), FRValueDist(prior)]) =>
runScoring(estimate, Score_Dist(d), Some(prior), env)
| Ok([
FRValueDist(estimate),
FRValueDistOrNumber(FRValueNumber(d)),
FRValueDist(prior),
]) =>
runScoring(estimate, Score_Scalar(d), Some(prior), env)
| Error(e) => Error(e)
| _ => Error(FunctionRegistry_Helpers.impossibleError)
}
},
),
FnDefinition.make(
~name="logScore",
~inputs=[FRTypeRecord([("estimate", FRTypeDist), ("answer", FRTypeDistOrNumber)])],
~run=(inputs, env) => {
switch FunctionRegistry_Helpers.Prepare.ToValueArray.Record.twoArgs(inputs) {
| Ok([FRValueDist(estimate), FRValueDistOrNumber(FRValueDist(d))]) =>
runScoring(estimate, Score_Dist(d), None, env)
| Ok([FRValueDist(estimate), FRValueDistOrNumber(FRValueNumber(d))]) =>
runScoring(estimate, Score_Scalar(d), None, env)
| Error(e) => Error(e)
| _ => Error(FunctionRegistry_Helpers.impossibleError)
}
},
),
FnDefinition.make(~name="klDivergence", ~inputs=[FRTypeDist, FRTypeDist], ~run=(
inputs,
env,
) => {
switch inputs {
| [FRValueDist(estimate), FRValueDist(d)] => runScoring(estimate, Score_Dist(d), None, env)
| _ => Error(FunctionRegistry_Helpers.impossibleError)
}
}),
],
(),
),
]
let registry = E.A.append(registryStart, scoreFunctions)

View File

@ -1,7 +1,7 @@
module IEV = ReducerInterface_InternalExpressionValue module IEV = ReducerInterface_InternalExpressionValue
type internalExpressionValue = IEV.t type internalExpressionValue = IEV.t
let dispatch = (call: IEV.functionCall, _: DistributionOperation.env): option< let dispatch = (call: IEV.functionCall, _: GenericDist.env): option<
result<internalExpressionValue, QuriSquiggleLang.Reducer_ErrorValue.errorValue>, result<internalExpressionValue, QuriSquiggleLang.Reducer_ErrorValue.errorValue>,
> => { > => {
switch call { switch call {

View File

@ -1,7 +1,7 @@
module IEV = ReducerInterface_InternalExpressionValue module IEV = ReducerInterface_InternalExpressionValue
type internalExpressionValue = IEV.t type internalExpressionValue = IEV.t
let dispatch = (call: IEV.functionCall, _: DistributionOperation.env): option< let dispatch = (call: IEV.functionCall, _: GenericDist.env): option<
result<internalExpressionValue, QuriSquiggleLang.Reducer_ErrorValue.errorValue>, result<internalExpressionValue, QuriSquiggleLang.Reducer_ErrorValue.errorValue>,
> => { > => {
switch call { switch call {

View File

@ -86,7 +86,7 @@ let toStringResult = x =>
} }
@genType @genType
type environment = DistributionOperation.env type environment = GenericDist.env
@genType @genType
let defaultEnvironment: environment = DistributionOperation.defaultEnv let defaultEnvironment: environment = DistributionOperation.defaultEnv

View File

@ -32,50 +32,38 @@ module Helpers = {
let toFloatFn = ( let toFloatFn = (
fnCall: DistributionTypes.DistributionOperation.toFloat, fnCall: DistributionTypes.DistributionOperation.toFloat,
dist: DistributionTypes.genericDist, dist: DistributionTypes.genericDist,
~env: DistributionOperation.env, ~env: GenericDist.env,
) => { ) => {
FromDist(DistributionTypes.DistributionOperation.ToFloat(fnCall), dist) FromDist(#ToFloat(fnCall), dist)->DistributionOperation.run(~env)->Some
->DistributionOperation.run(~env)
->Some
} }
let toStringFn = ( let toStringFn = (
fnCall: DistributionTypes.DistributionOperation.toString, fnCall: DistributionTypes.DistributionOperation.toString,
dist: DistributionTypes.genericDist, dist: DistributionTypes.genericDist,
~env: DistributionOperation.env, ~env: GenericDist.env,
) => { ) => {
FromDist(DistributionTypes.DistributionOperation.ToString(fnCall), dist) FromDist(#ToString(fnCall), dist)->DistributionOperation.run(~env)->Some
->DistributionOperation.run(~env)
->Some
} }
let toBoolFn = ( let toBoolFn = (
fnCall: DistributionTypes.DistributionOperation.toBool, fnCall: DistributionTypes.DistributionOperation.toBool,
dist: DistributionTypes.genericDist, dist: DistributionTypes.genericDist,
~env: DistributionOperation.env, ~env: GenericDist.env,
) => { ) => {
FromDist(DistributionTypes.DistributionOperation.ToBool(fnCall), dist) FromDist(#ToBool(fnCall), dist)->DistributionOperation.run(~env)->Some
->DistributionOperation.run(~env)
->Some
} }
let toDistFn = ( let toDistFn = (
fnCall: DistributionTypes.DistributionOperation.toDist, fnCall: DistributionTypes.DistributionOperation.toDist,
dist, dist,
~env: DistributionOperation.env, ~env: GenericDist.env,
) => { ) => {
FromDist(DistributionTypes.DistributionOperation.ToDist(fnCall), dist) FromDist(#ToDist(fnCall), dist)->DistributionOperation.run(~env)->Some
->DistributionOperation.run(~env)
->Some
} }
let twoDiststoDistFn = (direction, arithmetic, dist1, dist2, ~env: DistributionOperation.env) => { let twoDiststoDistFn = (direction, arithmetic, dist1, dist2, ~env: GenericDist.env) => {
FromDist( FromDist(
DistributionTypes.DistributionOperation.ToDistCombination( #ToDistCombination(direction, arithmeticMap(arithmetic), #Dist(dist2)),
direction,
arithmeticMap(arithmetic),
#Dist(dist2),
),
dist1, dist1,
)->DistributionOperation.run(~env) )->DistributionOperation.run(~env)
} }
@ -109,7 +97,7 @@ module Helpers = {
let mixtureWithGivenWeights = ( let mixtureWithGivenWeights = (
distributions: array<DistributionTypes.genericDist>, distributions: array<DistributionTypes.genericDist>,
weights: array<float>, weights: array<float>,
~env: DistributionOperation.env, ~env: GenericDist.env,
): DistributionOperation.outputType => ): DistributionOperation.outputType =>
E.A.length(distributions) == E.A.length(weights) E.A.length(distributions) == E.A.length(weights)
? Mixture(Belt.Array.zip(distributions, weights))->DistributionOperation.run(~env) ? Mixture(Belt.Array.zip(distributions, weights))->DistributionOperation.run(~env)
@ -119,7 +107,7 @@ module Helpers = {
let mixtureWithDefaultWeights = ( let mixtureWithDefaultWeights = (
distributions: array<DistributionTypes.genericDist>, distributions: array<DistributionTypes.genericDist>,
~env: DistributionOperation.env, ~env: GenericDist.env,
): DistributionOperation.outputType => { ): DistributionOperation.outputType => {
let length = E.A.length(distributions) let length = E.A.length(distributions)
let weights = Belt.Array.make(length, 1.0 /. Belt.Int.toFloat(length)) let weights = Belt.Array.make(length, 1.0 /. Belt.Int.toFloat(length))
@ -128,7 +116,7 @@ module Helpers = {
let mixture = ( let mixture = (
args: array<internalExpressionValue>, args: array<internalExpressionValue>,
~env: DistributionOperation.env, ~env: GenericDist.env,
): DistributionOperation.outputType => { ): DistributionOperation.outputType => {
let error = (err: string): DistributionOperation.outputType => let error = (err: string): DistributionOperation.outputType =>
err->DistributionTypes.ArgumentError->GenDistError err->DistributionTypes.ArgumentError->GenDistError
@ -167,20 +155,6 @@ module Helpers = {
} }
} }
} }
let klDivergenceWithPrior = (
prediction: DistributionTypes.genericDist,
answer: DistributionTypes.genericDist,
prior: DistributionTypes.genericDist,
env: DistributionOperation.env,
) => {
let term1 = DistributionOperation.Constructors.klDivergence(~env, prediction, answer)
let term2 = DistributionOperation.Constructors.klDivergence(~env, prior, answer)
switch E.R.merge(term1, term2)->E.R2.fmap(((a, b)) => a -. b) {
| Ok(x) => x->DistributionOperation.Float->Some
| Error(_) => None
}
}
} }
module SymbolicConstructors = { module SymbolicConstructors = {
@ -199,7 +173,7 @@ module SymbolicConstructors = {
} }
} }
let dispatchToGenericOutput = (call: IEV.functionCall, env: DistributionOperation.env): option< let dispatchToGenericOutput = (call: IEV.functionCall, env: GenericDist.env): option<
DistributionOperation.outputType, DistributionOperation.outputType,
> => { > => {
let (fnName, args) = call let (fnName, args) = call
@ -239,35 +213,6 @@ let dispatchToGenericOutput = (call: IEV.functionCall, env: DistributionOperatio
~env, ~env,
)->Some )->Some
| ("normalize", [IEvDistribution(dist)]) => Helpers.toDistFn(Normalize, dist, ~env) | ("normalize", [IEvDistribution(dist)]) => Helpers.toDistFn(Normalize, dist, ~env)
| ("klDivergence", [IEvDistribution(prediction), IEvDistribution(answer)]) =>
Some(DistributionOperation.run(FromDist(ToScore(KLDivergence(answer)), prediction), ~env))
| (
"klDivergence",
[IEvDistribution(prediction), IEvDistribution(answer), IEvDistribution(prior)],
) =>
Helpers.klDivergenceWithPrior(prediction, answer, prior, env)
| (
"logScoreWithPointAnswer",
[IEvDistribution(prediction), IEvNumber(answer), IEvDistribution(prior)],
)
| (
"logScoreWithPointAnswer",
[
IEvDistribution(prediction),
IEvDistribution(Symbolic(#Float(answer))),
IEvDistribution(prior),
],
) =>
DistributionOperation.run(
FromDist(ToScore(LogScore(answer, prior->Some)), prediction),
~env,
)->Some
| ("logScoreWithPointAnswer", [IEvDistribution(prediction), IEvNumber(answer)])
| (
"logScoreWithPointAnswer",
[IEvDistribution(prediction), IEvDistribution(Symbolic(#Float(answer)))],
) =>
DistributionOperation.run(FromDist(ToScore(LogScore(answer, None)), prediction), ~env)->Some
| ("isNormalized", [IEvDistribution(dist)]) => Helpers.toBoolFn(IsNormalized, dist, ~env) | ("isNormalized", [IEvDistribution(dist)]) => Helpers.toBoolFn(IsNormalized, dist, ~env)
| ("toPointSet", [IEvDistribution(dist)]) => Helpers.toDistFn(ToPointSet, dist, ~env) | ("toPointSet", [IEvDistribution(dist)]) => Helpers.toDistFn(ToPointSet, dist, ~env)
| ("scaleLog", [IEvDistribution(dist)]) => | ("scaleLog", [IEvDistribution(dist)]) =>

View File

@ -24,7 +24,7 @@ module ScientificUnit = {
} }
} }
let dispatch = (call: IEV.functionCall, _: DistributionOperation.env): option< let dispatch = (call: IEV.functionCall, _: GenericDist.env): option<
result<internalExpressionValue, QuriSquiggleLang.Reducer_ErrorValue.errorValue>, result<internalExpressionValue, QuriSquiggleLang.Reducer_ErrorValue.errorValue>,
> => { > => {
switch call { switch call {

View File

@ -8,7 +8,7 @@ The below few seem to work fine. In the future there's definitely more work to d
*/ */
@genType @genType
type samplingParams = DistributionOperation.env type samplingParams = GenericDist.env
@genType @genType
type genericDist = DistributionTypes.genericDist type genericDist = DistributionTypes.genericDist

View File

@ -547,6 +547,7 @@ module A = {
let init = Array.init let init = Array.init
let reduce = Belt.Array.reduce let reduce = Belt.Array.reduce
let reducei = Belt.Array.reduceWithIndex let reducei = Belt.Array.reduceWithIndex
let some = Belt.Array.some
let isEmpty = r => length(r) < 1 let isEmpty = r => length(r) < 1
let stableSortBy = Belt.SortArray.stableSortBy let stableSortBy = Belt.SortArray.stableSortBy
let toNoneIfEmpty = r => isEmpty(r) ? None : Some(r) let toNoneIfEmpty = r => isEmpty(r) ? None : Some(r)

View File

@ -327,8 +327,8 @@ module Zipped = {
module PointwiseCombination = { module PointwiseCombination = {
// t1Interpolator and t2Interpolator are functions from XYShape.XtoY, e.g. linearBetweenPointsExtrapolateFlat. // t1Interpolator and t2Interpolator are functions from XYShape.XtoY, e.g. linearBetweenPointsExtrapolateFlat.
let combine: ( let combine: (
(float, float) => result<float, Operation.Error.t>,
interpolator, interpolator,
(float, float) => result<float, Operation.Error.t>,
T.t, T.t,
T.t, T.t,
) => result<T.t, Operation.Error.t> = %raw(` ) => result<T.t, Operation.Error.t> = %raw(`
@ -337,7 +337,7 @@ module PointwiseCombination = {
// and interpolates the value on the other side, thus accumulating xs and ys. // and interpolates the value on the other side, thus accumulating xs and ys.
// This is written in raw JS because this can still be a bottleneck, and using refs for the i and j indices is quite painful. // This is written in raw JS because this can still be a bottleneck, and using refs for the i and j indices is quite painful.
function(fn, interpolator, t1, t2) { function(interpolator, fn, t1, t2) {
let t1n = t1.xs.length; let t1n = t1.xs.length;
let t2n = t2.xs.length; let t2n = t2.xs.length;
let outX = []; let outX = [];
@ -399,11 +399,11 @@ module PointwiseCombination = {
This is from an approach to kl divergence that was ultimately rejected. Leaving it in for now because it may help us factor `combine` out of raw javascript soon. This is from an approach to kl divergence that was ultimately rejected. Leaving it in for now because it may help us factor `combine` out of raw javascript soon.
*/ */
let combineAlongSupportOfSecondArgument0: ( let combineAlongSupportOfSecondArgument0: (
(float, float) => result<float, Operation.Error.t>,
interpolator, interpolator,
(float, float) => result<float, Operation.Error.t>,
T.t, T.t,
T.t, T.t,
) => result<T.t, Operation.Error.t> = (fn, interpolator, t1, t2) => { ) => result<T.t, Operation.Error.t> = (interpolator, fn, t1, t2) => {
let newYs = [] let newYs = []
let newXs = [] let newXs = []
let (l1, l2) = (E.A.length(t1.xs), E.A.length(t2.xs)) let (l1, l2) = (E.A.length(t1.xs), E.A.length(t2.xs))
@ -496,29 +496,9 @@ module PointwiseCombination = {
let newYs = E.A.fmap(x => XtoY.linear(x, t), newXs) let newYs = E.A.fmap(x => XtoY.linear(x, t), newXs)
{xs: newXs, ys: newYs} {xs: newXs, ys: newYs}
} }
// This function is used for klDivergence
let combineAlongSupportOfSecondArgument: (
(float, float) => result<float, Operation.Error.t>,
T.t,
T.t,
) => result<T.t, Operation.Error.t> = (fn, prediction, answer) => {
let combineWithFn = (answerX: float, i: int) => {
let answerY = answer.ys[i]
let predictionY = XtoY.linear(answerX, prediction)
fn(predictionY, answerY)
}
let newYsWithError = Js.Array.mapi((x, i) => combineWithFn(x, i), answer.xs)
let newYsOrError = E.A.R.firstErrorOrOpen(newYsWithError)
let result = switch newYsOrError {
| Ok(a) => Ok({xs: answer.xs, ys: a})
| Error(b) => Error(b)
}
result
}
let addCombine = (interpolator: interpolator, t1: T.t, t2: T.t): T.t => let addCombine = (interpolator: interpolator, t1: T.t, t2: T.t): T.t =>
combine((a, b) => Ok(a +. b), interpolator, t1, t2)->E.R.toExn( combine(interpolator, (a, b) => Ok(a +. b), t1, t2)->E.R.toExn(
"Add operation should never fail", "Add operation should never fail",
_, _,
) )

View File

@ -1,21 +1,35 @@
# Squiggle For VS Code # Squiggle For VS Code
_[marketplace](https://marketplace.visualstudio.com/items?itemName=QURI.vscode-squiggle)_ ## About
This extension provides support for [Squiggle](https://www.squiggle-language.com/) in VS Code. This extension provides support for [Squiggle](https://www.squiggle-language.com/) in VS Code. It can be found in the VS code _[marketplace](https://marketplace.visualstudio.com/items?itemName=QURI.vscode-squiggle)_
Features: Features:
- Preview `.squiggle` files in a preview pane - Preview `.squiggle` files in a preview pane
- Syntax highlighting for `.squiggle` and `.squiggleU` files - Syntax highlighting for `.squiggle` and `.squiggleU` files
# Configuration ## Installation
Some preview settings, e.g. whether to show the summary table or types of outputs, can be configurable on in the VS Code settings and persist between different preview sessions. You can install this extension by going to the "extensions" tab, searching for "Squiggle", and then installing it.
![](./images/vs-code-install.png)
## Usage
After loading a `.squiggle` file, an "Open Preview" button will appear. If you click it, the squiggle model will be shown, and updated as you edit and save you file.
![](./images/extension-screenshot.png)
### Configuration (optional)
Some preview settings, e.g. whether to show the summary table or types of outputs, can be configurable on in the VS Code settings and persist between different preview sessions. The VS Code settings can be accessed with the shortcut `Ctrl+,` with `Ctrl+Shift+P` + searching "Open Settings", or by accessing a file like `$HOME/.config/Code/User/settings.json` in Linux (see [here](https://stackoverflow.com/questions/65908987/how-can-i-open-visual-studio-codes-settings-json-file)) for other operating systems.
![](./images/vs-code-settings.png)
Check out the full list of Squiggle settings in the main VS Code settings. Check out the full list of Squiggle settings in the main VS Code settings.
# Build locally ## Build locally
We assume you ran `yarn` at the monorepo level for all dependencies. We assume you ran `yarn` at the monorepo level for all dependencies.

Binary file not shown.

After

Width:  |  Height:  |  Size: 233 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 187 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 77 KiB

View File

@ -138,10 +138,10 @@
"devDependencies": { "devDependencies": {
"@types/glob": "^7.2.0", "@types/glob": "^7.2.0",
"@types/node": "18.x", "@types/node": "18.x",
"@types/vscode": "^1.68.0", "@types/vscode": "^1.69.0",
"@typescript-eslint/eslint-plugin": "^5.30.4", "@typescript-eslint/eslint-plugin": "^5.30.6",
"@typescript-eslint/parser": "^5.30.4", "@typescript-eslint/parser": "^5.30.6",
"eslint": "^8.18.0", "eslint": "^8.19.0",
"glob": "^8.0.3", "glob": "^8.0.3",
"js-yaml": "^4.1.0", "js-yaml": "^4.1.0",
"typescript": "^4.7.4", "typescript": "^4.7.4",

View File

@ -12,11 +12,11 @@
"format": "prettier --write ." "format": "prettier --write ."
}, },
"dependencies": { "dependencies": {
"@docusaurus/core": "2.0.0-beta.21", "@docusaurus/core": "2.0.0-beta.22",
"@docusaurus/preset-classic": "2.0.0-beta.21", "@docusaurus/preset-classic": "2.0.0-beta.22",
"@quri/squiggle-components": "^0.2.20", "@quri/squiggle-components": "^0.2.20",
"base64-js": "^1.5.1", "base64-js": "^1.5.1",
"clsx": "^1.2.0", "clsx": "^1.2.1",
"hast-util-is-element": "2.1.2", "hast-util-is-element": "2.1.2",
"pako": "^2.0.4", "pako": "^2.0.4",
"prism-react-renderer": "^1.3.5", "prism-react-renderer": "^1.3.5",

2127
yarn.lock

File diff suppressed because it is too large Load Diff