Fixes CdfLibrary.js
This commit is contained in:
parent
4fc7723e32
commit
9349930ad8
|
@ -1,174 +1,170 @@
|
|||
const {
|
||||
Cdf,
|
||||
Pdf,
|
||||
ContinuousDistribution,
|
||||
ContinuousDistributionCombination,
|
||||
scoringFunctions,
|
||||
} = require("@foretold/cdf/lib");
|
||||
const _ = require("lodash");
|
||||
|
||||
/**
|
||||
*
|
||||
* @param xs
|
||||
* @param ys
|
||||
* @returns {{ys: *, xs: *}}
|
||||
*/
|
||||
function cdfToPdf({ xs, ys }) {
|
||||
let cdf = new Cdf(xs, ys);
|
||||
let pdf = cdf.toPdf();
|
||||
return { xs: pdf.xs, ys: pdf.ys };
|
||||
}
|
||||
Cdf,
|
||||
Pdf,
|
||||
ContinuousDistribution,
|
||||
ContinuousDistributionCombination,
|
||||
scoringFunctions,
|
||||
} = require("@foretold/cdf/lib");
|
||||
const _ = require("lodash");
|
||||
|
||||
/**
|
||||
*
|
||||
* @param xs
|
||||
* @param ys
|
||||
* @returns {{ys: *, xs: *}}
|
||||
*/
|
||||
function pdfToCdf({ xs, ys }) {
|
||||
let cdf = new Pdf(xs, ys);
|
||||
let pdf = cdf.toCdf();
|
||||
return { xs: pdf.xs, ys: pdf.ys };
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param sampleCount
|
||||
* @param vars
|
||||
* @returns {{ys: *, xs: *}}
|
||||
*/
|
||||
function mean(sampleCount, vars) {
|
||||
let cdfs = vars.map(r => new Cdf(r.xs, r.ys));
|
||||
let comb = new ContinuousDistributionCombination(cdfs);
|
||||
let newCdf = comb.combineYsWithMean(sampleCount);
|
||||
|
||||
return { xs: newCdf.xs, ys: newCdf.ys };
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param sampleCount
|
||||
* @param predictionCdf
|
||||
* @param resolutionCdf
|
||||
*/
|
||||
function scoreNonMarketCdfCdf(sampleCount, predictionCdf, resolutionCdf, resolutionUniformAdditionWeight=0) {
|
||||
let toCdf = (r) => (new Cdf(r.xs, r.ys));
|
||||
let prediction = toCdf(predictionCdf);
|
||||
if (_.isFinite(resolutionUniformAdditionWeight)){
|
||||
prediction = prediction.combineWithUniformOfCdf(
|
||||
{
|
||||
cdf: toCdf(resolutionCdf),
|
||||
uniformWeight: resolutionUniformAdditionWeight,
|
||||
sampleCount
|
||||
}
|
||||
);
|
||||
}
|
||||
|
||||
return scoringFunctions.distributionInputDistributionOutputMarketless({
|
||||
predictionCdf: prediction,
|
||||
resultCdf: toCdf(resolutionCdf),
|
||||
sampleCount,
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param sampleCount
|
||||
* @param cdf
|
||||
*/
|
||||
function differentialEntropy(sampleCount, cdf) {
|
||||
let toCdf = (r) => (new Cdf(r.xs, r.ys));
|
||||
|
||||
return scoringFunctions.differentialEntropy({
|
||||
cdf: toCdf(cdf),
|
||||
sampleCount: sampleCount
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param x
|
||||
* @param xs
|
||||
* @param ys
|
||||
* @returns {number}
|
||||
*/
|
||||
function findY(x, { xs, ys }) {
|
||||
let cdf = new Cdf(xs, ys);
|
||||
return cdf.findY(x);
|
||||
}
|
||||
/**
|
||||
*
|
||||
* @param xs
|
||||
* @param ys
|
||||
* @returns {{ys: *, xs: *}}
|
||||
*/
|
||||
function cdfToPdf({ xs, ys }) {
|
||||
let cdf = new Cdf(xs, ys);
|
||||
let pdf = cdf.toPdf();
|
||||
return { xs: pdf.xs, ys: pdf.ys };
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param x
|
||||
* @param xs
|
||||
* @param ys
|
||||
* @returns {number[]}
|
||||
*/
|
||||
function convertToNewLength(n, { xs, ys }) {
|
||||
let dist = new ContinuousDistribution(xs, ys);
|
||||
return dist.convertToNewLength(n);
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param y
|
||||
* @param xs
|
||||
* @param ys
|
||||
* @returns {number}
|
||||
*/
|
||||
function findX(y, { xs, ys }) {
|
||||
let cdf = new Cdf(xs, ys);
|
||||
return cdf.findX(y);
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param xs
|
||||
* @param ys
|
||||
* @returns {number[]}
|
||||
*/
|
||||
function integral({ xs, ys }) {
|
||||
if (_.includes(ys, NaN)){
|
||||
return NaN;
|
||||
}
|
||||
else if (_.includes(ys, Infinity) && _.includes(ys, -Infinity)){
|
||||
return NaN;
|
||||
}
|
||||
else if (_.includes(ys, Infinity)){
|
||||
return Infinity;
|
||||
}
|
||||
else if (_.includes(ys, -Infinity)){
|
||||
return -Infinity;
|
||||
}
|
||||
|
||||
let integral = 0;
|
||||
for (let i = 1; i < ys.length; i++) {
|
||||
let thisY = ys[i];
|
||||
let lastY = ys[i - 1];
|
||||
let thisX = xs[i];
|
||||
let lastX = xs[i - 1];
|
||||
|
||||
if (
|
||||
_.isFinite(thisY) && _.isFinite(lastY) &&
|
||||
_.isFinite(thisX) && _.isFinite(lastX)
|
||||
) {
|
||||
let sectionInterval = ((thisY + lastY) / 2) * (thisX - lastX);
|
||||
integral = integral + sectionInterval;
|
||||
/**
|
||||
*
|
||||
* @param xs
|
||||
* @param ys
|
||||
* @returns {{ys: *, xs: *}}
|
||||
*/
|
||||
function pdfToCdf({ xs, ys }) {
|
||||
let cdf = new Pdf(xs, ys);
|
||||
let pdf = cdf.toCdf();
|
||||
return { xs: pdf.xs, ys: pdf.ys };
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param sampleCount
|
||||
* @param vars
|
||||
* @returns {{ys: *, xs: *}}
|
||||
*/
|
||||
function mean(sampleCount, vars) {
|
||||
let cdfs = vars.map(r => new Cdf(r.xs, r.ys));
|
||||
let comb = new ContinuousDistributionCombination(cdfs);
|
||||
let newCdf = comb.combineYsWithMean(sampleCount);
|
||||
|
||||
return { xs: newCdf.xs, ys: newCdf.ys };
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param sampleCount
|
||||
* @param predictionCdf
|
||||
* @param resolutionCdf
|
||||
*/
|
||||
function scoreNonMarketCdfCdf(sampleCount, predictionCdf, resolutionCdf, resolutionUniformAdditionWeight = 0) {
|
||||
let toCdf = (r) => (new Cdf(r.xs, r.ys));
|
||||
let prediction = toCdf(predictionCdf);
|
||||
if (_.isFinite(resolutionUniformAdditionWeight)) {
|
||||
prediction = prediction.combineWithUniformOfCdf(
|
||||
{
|
||||
cdf: toCdf(resolutionCdf),
|
||||
uniformWeight: resolutionUniformAdditionWeight,
|
||||
sampleCount
|
||||
}
|
||||
|
||||
}
|
||||
return integral;
|
||||
);
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
cdfToPdf,
|
||||
pdfToCdf,
|
||||
findY,
|
||||
findX,
|
||||
convertToNewLength,
|
||||
mean,
|
||||
scoreNonMarketCdfCdf,
|
||||
differentialEntropy,
|
||||
integral,
|
||||
};
|
||||
|
||||
|
||||
return scoringFunctions.distributionInputDistributionOutputMarketless({
|
||||
predictionCdf: prediction,
|
||||
resultCdf: toCdf(resolutionCdf),
|
||||
sampleCount,
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param sampleCount
|
||||
* @param cdf
|
||||
*/
|
||||
function differentialEntropy(sampleCount, cdf) {
|
||||
let toCdf = (r) => (new Cdf(r.xs, r.ys));
|
||||
|
||||
return scoringFunctions.differentialEntropy({
|
||||
cdf: toCdf(cdf),
|
||||
sampleCount: sampleCount
|
||||
});
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param x
|
||||
* @param xs
|
||||
* @param ys
|
||||
* @returns {number}
|
||||
*/
|
||||
function findY(x, { xs, ys }) {
|
||||
let cdf = new Cdf(xs, ys);
|
||||
return cdf.findY(x);
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param x
|
||||
* @param xs
|
||||
* @param ys
|
||||
* @returns {number[]}
|
||||
*/
|
||||
function convertToNewLength(n, { xs, ys }) {
|
||||
let dist = new ContinuousDistribution(xs, ys);
|
||||
return dist.convertToNewLength(n);
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param y
|
||||
* @param xs
|
||||
* @param ys
|
||||
* @returns {number}
|
||||
*/
|
||||
function findX(y, { xs, ys }) {
|
||||
let cdf = new Cdf(xs, ys);
|
||||
return cdf.findX(y);
|
||||
}
|
||||
|
||||
/**
|
||||
*
|
||||
* @param xs
|
||||
* @param ys
|
||||
* @returns {number[]}
|
||||
*/
|
||||
function integral({ xs, ys }) {
|
||||
if (_.includes(ys, NaN)) {
|
||||
return NaN;
|
||||
} else if (_.includes(ys, Infinity) && _.includes(ys, -Infinity)) {
|
||||
return NaN;
|
||||
} else if (_.includes(ys, Infinity)) {
|
||||
return Infinity;
|
||||
} else if (_.includes(ys, -Infinity)) {
|
||||
return -Infinity;
|
||||
}
|
||||
|
||||
let integral = 0;
|
||||
for (let i = 1; i < ys.length; i++) {
|
||||
let thisY = ys[i];
|
||||
let lastY = ys[i - 1];
|
||||
let thisX = xs[i];
|
||||
let lastX = xs[i - 1];
|
||||
|
||||
if (
|
||||
_.isFinite(thisY) && _.isFinite(lastY) &&
|
||||
_.isFinite(thisX) && _.isFinite(lastX)
|
||||
) {
|
||||
let sectionInterval = ((thisY + lastY) / 2) * (thisX - lastX);
|
||||
integral = integral + sectionInterval;
|
||||
}
|
||||
|
||||
}
|
||||
return integral;
|
||||
}
|
||||
|
||||
module.exports = {
|
||||
cdfToPdf,
|
||||
pdfToCdf,
|
||||
findY,
|
||||
findX,
|
||||
convertToNewLength,
|
||||
mean,
|
||||
scoreNonMarketCdfCdf,
|
||||
differentialEntropy,
|
||||
integral,
|
||||
};
|
||||
|
|
Loading…
Reference in New Issue
Block a user