Starting to pull out distributions for more specialized documentation
This commit is contained in:
parent
37047ac9ff
commit
92f606b09b
|
@ -26,7 +26,7 @@ If both values are above zero, a `lognormal` distribution is used. If not, a `no
|
|||
lognormal distribution with 5th and 95th percentiles at 5 and 10.
|
||||
<SquiggleEditor initialSquiggleString="5 to 10" />
|
||||
</TabItem>
|
||||
<TabItem value="ex3" label="to(5,10)" default>
|
||||
<TabItem value="ex3" label="to(5,10)">
|
||||
`5 to 10` does the same thing as `to(5,10)`.
|
||||
<SquiggleEditor initialSquiggleString="to(5,10)" />
|
||||
</TabItem>
|
||||
|
@ -45,7 +45,7 @@ If both values are above zero, a `lognormal` distribution is used. If not, a `no
|
|||
### Arguments
|
||||
|
||||
- `5thPercentile`: Float
|
||||
- `95thPercentile`: Float
|
||||
- `95thPercentile`: Float, greater than `5thPercentile`
|
||||
|
||||
<Admonition type="tip" title="Tip">
|
||||
<p>
|
||||
|
@ -77,10 +77,10 @@ The `mixture` mixes combines multiple distributions to create a mixture. You can
|
|||
<TabItem value="ex1" label="Simple" default>
|
||||
<SquiggleEditor initialSquiggleString="mixture(1 to 2, 5 to 8, 9 to 10)" />
|
||||
</TabItem>
|
||||
<TabItem value="ex2" label="With Weights" default>
|
||||
<TabItem value="ex2" label="With Weights">
|
||||
<SquiggleEditor initialSquiggleString="mixture(1 to 2, 5 to 8, 9 to 10, [0.1, 0.1, 0.8])" />
|
||||
</TabItem>
|
||||
<TabItem value="ex3" label="With Continuous and Discrete Inputs" default>
|
||||
<TabItem value="ex3" label="With Continuous and Discrete Inputs">
|
||||
<SquiggleEditor initialSquiggleString="mixture(1 to 5, 8 to 10, 1, 3, 20)" />
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
@ -137,11 +137,12 @@ mx(forecast, forecast_if_completely_wrong, [1-chance_completely_wrong, chance_co
|
|||
|
||||
`normal(mean:float, standardDeviation:float)`
|
||||
|
||||
Creates a [normal distribution](https://en.wikipedia.org/wiki/Normal_distribution) with the given mean and standard deviation.
|
||||
<Tabs>
|
||||
<TabItem value="ex1" label="normal(5,1)" default>
|
||||
<SquiggleEditor initialSquiggleString="normal(5, 1)" />
|
||||
</TabItem>
|
||||
<TabItem value="ex2" label="normal(10m, 10m)" default>
|
||||
<TabItem value="ex2" label="normal(100000000000, 100000000000)">
|
||||
<SquiggleEditor initialSquiggleString="normal(100000000000, 100000000000)" />
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
@ -151,13 +152,13 @@ mx(forecast, forecast_if_completely_wrong, [1-chance_completely_wrong, chance_co
|
|||
- `mean`: Float
|
||||
- `standard deviation`: Float greater than zero
|
||||
|
||||
[Wikipedia entry](https://en.wikipedia.org/wiki/Normal_distribution)
|
||||
[Wikipedia](https://en.wikipedia.org/wiki/Normal_distribution)
|
||||
|
||||
## Log-normal
|
||||
|
||||
The log of `lognormal(mu, sigma)` is a normal distribution with mean `mu` and standard deviation `sigma`.
|
||||
`lognormal(mu: float, sigma: float)`
|
||||
|
||||
`lognormal(mu: float, sigma: float)`
|
||||
Creates a [log-normal distribution](https://en.wikipedia.org/wiki/Log-normal_distribution) with the given mu and sigma.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="lognormal(0, 0.7)" />
|
||||
|
||||
|
@ -168,85 +169,124 @@ The log of `lognormal(mu, sigma)` is a normal distribution with mean `mu` and st
|
|||
|
||||
[Wikipedia](https://en.wikipedia.org/wiki/Log-normal_distribution)
|
||||
|
||||
An alternative format is also available. The `to` notation creates a lognormal
|
||||
distribution with a 90% confidence interval between the two numbers. We add
|
||||
this convenience as lognormal distributions are commonly used in practice.
|
||||
### Argument Alternatives
|
||||
`Mu` and `sigma` can be difficult to directly reason about. Because of this complexity, we recommend typically using the <a href="#to">to</a> syntax.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="2 to 10" />
|
||||
|
||||
#### Future feature:
|
||||
|
||||
Furthermore, it's also possible to create a lognormal from it's actual mean
|
||||
and standard deviation, using `lognormalFromMeanAndStdDev`.
|
||||
|
||||
TODO: interpreter/parser doesn't provide this in current `develop` branch
|
||||
|
||||
<SquiggleEditor initialSquiggleString="lognormalFromMeanAndStdDev(20, 10)" />
|
||||
|
||||
#### Validity
|
||||
|
||||
- `sigma > 0`
|
||||
- In `x to y` notation, `x < y`
|
||||
<details>
|
||||
<summary>❓ Understanding <bold>mu</bold> and <bold>sigma</bold></summary>
|
||||
<p>
|
||||
The log of `lognormal(mu, sigma)` is a normal distribution with mean `mu` and standard deviation `sigma`. For example, these two distributions are identical:
|
||||
</p>
|
||||
<SquiggleEditor
|
||||
initialSquiggleString={`normalMean = 10
|
||||
normalStdDev = 2
|
||||
logOfLognormal = log(lognormal(normalMean, normalStdDev))
|
||||
[logOfLognormal, normal(normalMean, normalStdDev)]`}
|
||||
/>
|
||||
</details>
|
||||
|
||||
## Uniform
|
||||
|
||||
`normal(low:float, high:float)`
|
||||
`uniform(low:float, high:float)`
|
||||
|
||||
<Tabs>
|
||||
<TabItem value="ex1" label="uniform(3,7)" default>
|
||||
<SquiggleEditor initialSquiggleString="uniform(3,7)" />
|
||||
</TabItem>
|
||||
<TabItem value="ex2" label="invalid: uniform(7,5)" default>
|
||||
<SquiggleEditor initialSquiggleString="uniform(7,5)" />
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
Creates a [uniform distribution](https://en.wikipedia.org/wiki/Uniform_distribution_(continuous)) with the given low and high values.
|
||||
<SquiggleEditor initialSquiggleString="uniform(3,7)" />
|
||||
|
||||
### Arguments
|
||||
|
||||
- `low`: Float
|
||||
- `high`: Float greater than `low`
|
||||
|
||||
<Admonition type="caution" title="Caution">
|
||||
<p>
|
||||
While uniform distributions are very simple to understand, we find it rare to find uncertainties that actually look like this. Before using a uniform distribution, think hard about if you are really 100% confident that the paramater will not wind up being just outside the stated boundaries.
|
||||
</p>
|
||||
|
||||
<p>
|
||||
One good example of a uniform distribution uncertainty would be clear physical limitations. You might have complete complete uncertainty on what time of day an event will occur, but can say with 100% confidence it will happen between the hours of 0:00 and 24:00.
|
||||
</p>
|
||||
</Admonition>
|
||||
|
||||
## Beta
|
||||
``beta(alpha:float, beta:float)``
|
||||
|
||||
The `beta(a, b)` function creates a beta distribution with parameters `a` and `b`:
|
||||
Creates a [beta distribution](https://en.wikipedia.org/wiki/Beta_distribution) with the given `alpha` and `beta` values. For a good summary of the beta distribution, see [this explanation](https://stats.stackexchange.com/a/47782) on Stack Overflow.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="beta(10, 20)" />
|
||||
<Tabs>
|
||||
<TabItem value="ex1" label="beta(10, 20)" default>
|
||||
<SquiggleEditor initialSquiggleString="beta(10,20)" />
|
||||
</TabItem>
|
||||
<TabItem value="ex2" label="beta(1000, 1000)" >
|
||||
<SquiggleEditor initialSquiggleString="beta(1000, 2000)" />
|
||||
</TabItem>
|
||||
<TabItem value="ex3" label="beta(1, 10)" >
|
||||
<SquiggleEditor initialSquiggleString="beta(1, 10)" />
|
||||
</TabItem>
|
||||
<TabItem value="ex4" label="beta(10, 1)" >
|
||||
<SquiggleEditor initialSquiggleString="beta(10, 1)" />
|
||||
</TabItem>
|
||||
<TabItem value="ex5" label="beta(0.8, 0.8)" >
|
||||
<SquiggleEditor initialSquiggleString="beta(0.8, 0.8)" />
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
|
||||
#### Validity
|
||||
### Arguments
|
||||
|
||||
- `a > 0`
|
||||
- `b > 0`
|
||||
- Empirically, we have noticed that numerical instability arises when `a < 1` or `b < 1`
|
||||
- `alpha`: Float greater than zero
|
||||
- `beta`: Float greater than zero
|
||||
|
||||
<Admonition type="caution" title="Caution with small numbers">
|
||||
<p>
|
||||
Squiggle struggles to show beta distributions when either alpha or beta are below 1.0. This is because the tails at ~0.0 and ~1.0 are very high. Using a log scale for the y-axis helps here.
|
||||
</p>
|
||||
<details>
|
||||
<summary>Examples</summary>
|
||||
<Tabs>
|
||||
<TabItem value="ex1" label="beta(0.3, 0.3)" default>
|
||||
<SquiggleEditor initialSquiggleString="beta(0.3, 0.3)" />
|
||||
</TabItem>
|
||||
<TabItem value="ex2" label="beta(0.5, 0.5)">
|
||||
<SquiggleEditor initialSquiggleString="beta(0.5, 0.5)" />
|
||||
</TabItem>
|
||||
<TabItem value="ex3" label="beta(0.8, 0.8)">
|
||||
<SquiggleEditor initialSquiggleString="beta(.8,.8)" />
|
||||
</TabItem>
|
||||
<TabItem value="ex4" label="beta(0.9, 0.9)">
|
||||
<SquiggleEditor initialSquiggleString="beta(.9,.9)" />
|
||||
</TabItem>
|
||||
</Tabs>
|
||||
</details>
|
||||
</Admonition>
|
||||
|
||||
## Exponential
|
||||
|
||||
The `exponential(rate)` function creates an exponential distribution with the given
|
||||
rate.
|
||||
``exponential(rate:float)``
|
||||
|
||||
<SquiggleEditor initialSquiggleString="exponential(1.11)" />
|
||||
Creates an [exponential distribution](https://en.wikipedia.org/wiki/Exponential_distribution) with the given rate.
|
||||
|
||||
#### Validity
|
||||
<SquiggleEditor initialSquiggleString="exponential(4)" />
|
||||
|
||||
- `rate > 0`
|
||||
### Arguments
|
||||
- `rate`: Float greater than zero
|
||||
|
||||
## Triangular distribution
|
||||
|
||||
The `triangular(a,b,c)` function creates a triangular distribution with lower
|
||||
bound `a`, mode `b` and upper bound `c`.
|
||||
``triangular(low:float, mode:float, high:float)``
|
||||
|
||||
Creates a [triangular distribution](https://en.wikipedia.org/wiki/Triangular_distribution) with the given low, mode, and high values.
|
||||
|
||||
#### Validity
|
||||
|
||||
- `a < b < c`
|
||||
### Arguments
|
||||
- `low`: Float
|
||||
- `mode`: Float greater than `low`
|
||||
- `high`: Float greater than `mode`
|
||||
|
||||
<SquiggleEditor initialSquiggleString="triangular(1, 2, 4)" />
|
||||
|
||||
### Scalar (constant dist)
|
||||
## FromSamples
|
||||
|
||||
Squiggle, when the context is right, automatically casts a float to a constant distribution.
|
||||
|
||||
## `fromSamples`
|
||||
|
||||
The last distribution constructor takes an array of samples and constructs a sample set distribution.
|
||||
Creates a sample set distribution using an array of samples.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="fromSamples([1,2,3,4,6,5,5,5])" />
|
||||
|
||||
|
|
|
@ -5,110 +5,6 @@ sidebar_position: 7
|
|||
|
||||
import { SquiggleEditor } from "../../src/components/SquiggleEditor";
|
||||
|
||||
## Inventory distributions
|
||||
|
||||
We provide starter distributions, computed symbolically.
|
||||
|
||||
### Normal distribution
|
||||
|
||||
The `normal(mean, sd)` function creates a normal distribution with the given mean
|
||||
and standard deviation.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="normal(5, 1)" />
|
||||
|
||||
#### Validity
|
||||
|
||||
- `sd > 0`
|
||||
|
||||
### Uniform distribution
|
||||
|
||||
The `uniform(low, high)` function creates a uniform distribution between the
|
||||
two given numbers.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="uniform(3, 7)" />
|
||||
|
||||
#### Validity
|
||||
|
||||
- `low < high`
|
||||
|
||||
### Lognormal distribution
|
||||
|
||||
The `lognormal(mu, sigma)` returns the log of a normal distribution with parameters
|
||||
`mu` and `sigma`. The log of `lognormal(mu, sigma)` is a normal distribution with mean `mu` and standard deviation `sigma`.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="lognormal(0, 0.7)" />
|
||||
|
||||
An alternative format is also available. The `to` notation creates a lognormal
|
||||
distribution with a 90% confidence interval between the two numbers. We add
|
||||
this convenience as lognormal distributions are commonly used in practice.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="2 to 10" />
|
||||
|
||||
#### Future feature:
|
||||
|
||||
Furthermore, it's also possible to create a lognormal from it's actual mean
|
||||
and standard deviation, using `lognormalFromMeanAndStdDev`.
|
||||
|
||||
TODO: interpreter/parser doesn't provide this in current `develop` branch
|
||||
|
||||
<SquiggleEditor initialSquiggleString="lognormalFromMeanAndStdDev(20, 10)" />
|
||||
|
||||
#### Validity
|
||||
|
||||
- `sigma > 0`
|
||||
- In `x to y` notation, `x < y`
|
||||
|
||||
### Beta distribution
|
||||
|
||||
The `beta(a, b)` function creates a beta distribution with parameters `a` and `b`:
|
||||
|
||||
<SquiggleEditor initialSquiggleString="beta(10, 20)" />
|
||||
|
||||
#### Validity
|
||||
|
||||
- `a > 0`
|
||||
- `b > 0`
|
||||
- Empirically, we have noticed that numerical instability arises when `a < 1` or `b < 1`
|
||||
|
||||
### Exponential distribution
|
||||
|
||||
The `exponential(rate)` function creates an exponential distribution with the given
|
||||
rate.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="exponential(1.11)" />
|
||||
|
||||
#### Validity
|
||||
|
||||
- `rate > 0`
|
||||
|
||||
### Triangular distribution
|
||||
|
||||
The `triangular(a,b,c)` function creates a triangular distribution with lower
|
||||
bound `a`, mode `b` and upper bound `c`.
|
||||
|
||||
#### Validity
|
||||
|
||||
- `a < b < c`
|
||||
|
||||
<SquiggleEditor initialSquiggleString="triangular(1, 2, 4)" />
|
||||
|
||||
### Scalar (constant dist)
|
||||
|
||||
Squiggle, when the context is right, automatically casts a float to a constant distribution.
|
||||
|
||||
## `fromSamples`
|
||||
|
||||
The last distribution constructor takes an array of samples and constructs a sample set distribution.
|
||||
|
||||
<SquiggleEditor initialSquiggleString="fromSamples([1,2,3,4,6,5,5,5])" />
|
||||
|
||||
#### Validity
|
||||
|
||||
For `fromSamples(xs)`,
|
||||
|
||||
- `xs.length > 5`
|
||||
- Strictly every element of `xs` must be a number.
|
||||
|
||||
## Operating on distributions
|
||||
|
||||
Here are the ways we combine distributions.
|
||||
|
|
Loading…
Reference in New Issue
Block a user