feat: In Danger, add dmr for many functions
Still to be tested
This commit is contained in:
parent
2f33559e77
commit
8bdfa03799
|
@ -175,6 +175,13 @@ module Internals = {
|
|||
optimalAllocations: array<float>,
|
||||
currentMarginalReturns: result<array<float>, string>,
|
||||
}
|
||||
let findBiggestElementIndex = xs =>
|
||||
E.A.reducei(xs, 0, (acc, newElement, index) => {
|
||||
switch newElement > xs[acc] {
|
||||
| true => index
|
||||
| false => acc
|
||||
}
|
||||
})
|
||||
type diminishingReturnsAccumulator = result<diminishingReturnsAccumulatorInner, string>
|
||||
let diminishingMarginalReturnsForTwoFunctions = (
|
||||
lambda1,
|
||||
|
@ -214,13 +221,6 @@ module Internals = {
|
|||
let increment = funds /. numDivisions
|
||||
let arrayOfIncrements = Belt.Array.makeBy(numDivisionsInt, _ => increment)
|
||||
|
||||
let findBiggestElementIndex = xs =>
|
||||
E.A.reducei(xs, 0, (acc, newElement, index) => {
|
||||
switch newElement > xs[acc] {
|
||||
| true => index
|
||||
| false => acc
|
||||
}
|
||||
})
|
||||
let initAccumulator: diminishingReturnsAccumulator = Ok({
|
||||
optimalAllocations: [0.0, 0.0],
|
||||
currentMarginalReturns: E.A.R.firstErrorOrOpen([
|
||||
|
@ -278,6 +278,115 @@ module Internals = {
|
|||
}
|
||||
optimalAllocationResult
|
||||
}
|
||||
let diminishingMarginalReturnsForManyFunctions = (
|
||||
innerLambdas,
|
||||
funds,
|
||||
approximateIncrement,
|
||||
environment,
|
||||
reducer,
|
||||
) => {
|
||||
/*
|
||||
Two possible algorithms (n=funds/increment, m=num lambdas)
|
||||
1. O(n): Iterate through value on next n dollars. At each step, only compute the new marginal return of the function which is spent
|
||||
2. O(n*m): Iterate through all possible spending combinations. Fun is, it doesn't assume that the returns of marginal spending are diminishing.
|
||||
*/
|
||||
let individuallyWrappedLambdas = E.A.fmap(possibleLambda =>
|
||||
switch possibleLambda {
|
||||
| ReducerInterface_InternalExpressionValue.IEvLambda(lambda) => Ok(lambda)
|
||||
| _ =>
|
||||
Error(
|
||||
"Error in diminishingMarginalReturnsForManyFunctions: One of the elements in the function array is not a function",
|
||||
)
|
||||
}
|
||||
, innerLambdas)
|
||||
let collectivelyWrappedLambdas = E.A.R.firstErrorOrOpen(individuallyWrappedLambdas)
|
||||
let result = switch collectivelyWrappedLambdas {
|
||||
| Ok(lambdas) => {
|
||||
let applyFunctionAtFloatToFloatOption = (lambda, point: float) => {
|
||||
// Defined here so that it has access to environment, reducer
|
||||
let pointAsInternalExpression = castFloatToInternalNumber(point)
|
||||
let resultAsInternalExpression = Reducer_Expression_Lambda.doLambdaCall(
|
||||
lambda,
|
||||
list{pointAsInternalExpression},
|
||||
environment,
|
||||
reducer,
|
||||
)
|
||||
let result = switch resultAsInternalExpression {
|
||||
| Ok(IEvNumber(x)) => Ok(x)
|
||||
| Error(_) =>
|
||||
Error(
|
||||
"Integration error 1 in Danger.integrate. It's possible that your function doesn't return a number, try definining auxiliaryFunction(x) = mean(yourFunction(x)) and integrate auxiliaryFunction instead",
|
||||
)
|
||||
| _ => Error("Integration error 2 in Danger.integrate")
|
||||
}
|
||||
result
|
||||
}
|
||||
let numDivisions = Js.Math.round(funds /. approximateIncrement)
|
||||
let numDivisionsInt = Belt.Float.toInt(numDivisions)
|
||||
let increment = funds /. numDivisions
|
||||
let arrayOfIncrements = Belt.Array.makeBy(numDivisionsInt, _ => increment)
|
||||
let numLambdas = E.A.length(lambdas)
|
||||
let initAccumulator: diminishingReturnsAccumulator = Ok({
|
||||
optimalAllocations: Belt.Array.makeBy(numLambdas, _ => 0.0),
|
||||
currentMarginalReturns: E.A.fmap(
|
||||
lambda => applyFunctionAtFloatToFloatOption(lambda, 0.0),
|
||||
lambdas,
|
||||
)->E.A.R.firstErrorOrOpen,
|
||||
})
|
||||
let optimalAllocationEndAccumulator = E.A.reduce(arrayOfIncrements, initAccumulator, (
|
||||
acc,
|
||||
newIncrement,
|
||||
) => {
|
||||
switch acc {
|
||||
| Ok(accInner) => {
|
||||
let oldMarginalReturnsWrapped = accInner.currentMarginalReturns
|
||||
let newAccWrapped = switch oldMarginalReturnsWrapped {
|
||||
| Ok(oldMarginalReturns) => {
|
||||
let indexOfBiggestDMR = findBiggestElementIndex(oldMarginalReturns)
|
||||
let newOptimalAllocations = Belt.Array.copy(accInner.optimalAllocations)
|
||||
let newOptimalAllocationsi =
|
||||
newOptimalAllocations[indexOfBiggestDMR] +. newIncrement
|
||||
newOptimalAllocations[indexOfBiggestDMR] = newOptimalAllocationsi
|
||||
let lambdai = lambdas[indexOfBiggestDMR]
|
||||
let newMarginalResultsLambdai = applyFunctionAtFloatToFloatOption(
|
||||
lambdai,
|
||||
newOptimalAllocationsi,
|
||||
)
|
||||
let newCurrentMarginalReturns = switch newMarginalResultsLambdai {
|
||||
| Ok(value) => {
|
||||
let result = Belt.Array.copy(oldMarginalReturns)
|
||||
result[indexOfBiggestDMR] = value
|
||||
Ok(result)
|
||||
}
|
||||
| Error(b) => Error(b)
|
||||
}
|
||||
|
||||
let newAcc: diminishingReturnsAccumulatorInner = {
|
||||
optimalAllocations: newOptimalAllocations,
|
||||
currentMarginalReturns: newCurrentMarginalReturns,
|
||||
}
|
||||
Ok(newAcc)
|
||||
}
|
||||
| Error(b) => Error(b)
|
||||
}
|
||||
newAccWrapped
|
||||
}
|
||||
| Error(b) => Error(b)
|
||||
}
|
||||
})
|
||||
let optimalAllocationResult = switch optimalAllocationEndAccumulator {
|
||||
| Ok(inner) => Ok(castArrayOfFloatsToInternalArrayOfInternals(inner.optimalAllocations))
|
||||
| Error(b) => Error(b)
|
||||
}
|
||||
optimalAllocationResult
|
||||
/*let result = [0.0, 0.0]->castArrayOfFloatsToInternalArrayOfInternals->Ok
|
||||
result*/
|
||||
}
|
||||
|
||||
| Error(b) => Error(b)
|
||||
}
|
||||
result
|
||||
}
|
||||
}
|
||||
|
||||
let library = [
|
||||
|
@ -457,7 +566,7 @@ let library = [
|
|||
~nameSpace,
|
||||
~output=EvtArray,
|
||||
~requiresNamespace=false,
|
||||
~examples=[`Danger.diminishingMarginalReturnsForTwoFunctions({|x| x+1}, {|y| 10}, 100, 1)`],
|
||||
~examples=[`Danger.diminishingMarginalReturnsForTwoFunctions({|x| x+1}, {|y| 10}, 100, 0.01)`],
|
||||
~definitions=[
|
||||
FnDefinition.make(
|
||||
~name="diminishingMarginalReturnsForTwoFunctions",
|
||||
|
@ -485,4 +594,33 @@ let library = [
|
|||
],
|
||||
(),
|
||||
),
|
||||
Function.make(
|
||||
~name="diminishingMarginalReturnsForManyFunctions",
|
||||
~nameSpace,
|
||||
~output=EvtArray,
|
||||
~requiresNamespace=false,
|
||||
~examples=[
|
||||
`Danger.diminishingMarginalReturnsForManyFunctions([{|x| x+1}, {|y| 10} , {|z| 20 - 2*z}], 100, 0.01)`,
|
||||
],
|
||||
~definitions=[
|
||||
FnDefinition.make(
|
||||
~name="diminishingMarginalReturnsForManyFunctions",
|
||||
~inputs=[FRTypeArray(FRTypeLambda), FRTypeNumber, FRTypeNumber],
|
||||
~run=(inputs, _, env, reducer) =>
|
||||
switch inputs {
|
||||
| [IEvArray(innerlambdas), IEvNumber(funds), IEvNumber(approximateIncrement)] =>
|
||||
Internals.diminishingMarginalReturnsForManyFunctions(
|
||||
innerlambdas,
|
||||
funds,
|
||||
approximateIncrement,
|
||||
env,
|
||||
reducer,
|
||||
)
|
||||
| _ => Error("Error in Danger.diminishingMarginalReturnsForTwoFunctions")
|
||||
},
|
||||
(),
|
||||
),
|
||||
],
|
||||
(),
|
||||
),
|
||||
]
|
||||
|
|
Loading…
Reference in New Issue
Block a user