Merge pull request #521 from quantified-uncertainty/score-dist-on-scalar-resolution
score a dist against a scalar resolution
This commit is contained in:
commit
833175bce2
|
@ -146,7 +146,16 @@ let rec run = (~env, functionCallInfo: functionCallInfo): outputType => {
|
|||
}
|
||||
| ToDist(Normalize) => dist->GenericDist.normalize->Dist
|
||||
| ToScore(KLDivergence(t2)) =>
|
||||
GenericDist.klDivergence(dist, t2, ~toPointSetFn)
|
||||
GenericDist.Score.klDivergence(dist, t2, ~toPointSetFn)
|
||||
->E.R2.fmap(r => Float(r))
|
||||
->OutputLocal.fromResult
|
||||
| ToScore(LogScore(answer, prior)) =>
|
||||
GenericDist.Score.logScoreWithPointResolution(
|
||||
~prediction=dist,
|
||||
~answer,
|
||||
~prior,
|
||||
~toPointSetFn,
|
||||
)
|
||||
->E.R2.fmap(r => Float(r))
|
||||
->OutputLocal.fromResult
|
||||
| ToBool(IsNormalized) => dist->GenericDist.isNormalized->Bool
|
||||
|
@ -263,6 +272,12 @@ module Constructors = {
|
|||
let normalize = (~env, dist) => C.normalize(dist)->run(~env)->toDistR
|
||||
let isNormalized = (~env, dist) => C.isNormalized(dist)->run(~env)->toBoolR
|
||||
let klDivergence = (~env, dist1, dist2) => C.klDivergence(dist1, dist2)->run(~env)->toFloatR
|
||||
let logScoreWithPointResolution = (
|
||||
~env,
|
||||
~prediction: DistributionTypes.genericDist,
|
||||
~answer: float,
|
||||
~prior: option<DistributionTypes.genericDist>,
|
||||
) => C.logScoreWithPointResolution(~prediction, ~answer, ~prior)->run(~env)->toFloatR
|
||||
let toPointSet = (~env, dist) => C.toPointSet(dist)->run(~env)->toDistR
|
||||
let toSampleSet = (~env, dist, n) => C.toSampleSet(dist, n)->run(~env)->toDistR
|
||||
let fromSamples = (~env, xs) => C.fromSamples(xs)->run(~env)->toDistR
|
||||
|
|
|
@ -63,6 +63,13 @@ module Constructors: {
|
|||
@genType
|
||||
let klDivergence: (~env: env, genericDist, genericDist) => result<float, error>
|
||||
@genType
|
||||
let logScoreWithPointResolution: (
|
||||
~env: env,
|
||||
~prediction: genericDist,
|
||||
~answer: float,
|
||||
~prior: option<genericDist>,
|
||||
) => result<float, error>
|
||||
@genType
|
||||
let toPointSet: (~env: env, genericDist) => result<genericDist, error>
|
||||
@genType
|
||||
let toSampleSet: (~env: env, genericDist, int) => result<genericDist, error>
|
||||
|
|
|
@ -91,7 +91,7 @@ module DistributionOperation = {
|
|||
| ToString
|
||||
| ToSparkline(int)
|
||||
|
||||
type toScore = KLDivergence(genericDist)
|
||||
type toScore = KLDivergence(genericDist) | LogScore(float, option<genericDist>)
|
||||
|
||||
type fromDist =
|
||||
| ToFloat(toFloat)
|
||||
|
@ -120,6 +120,7 @@ module DistributionOperation = {
|
|||
| ToFloat(#Sample) => `sample`
|
||||
| ToFloat(#IntegralSum) => `integralSum`
|
||||
| ToScore(KLDivergence(_)) => `klDivergence`
|
||||
| ToScore(LogScore(x, _)) => `logScore against ${E.Float.toFixed(x)}`
|
||||
| ToDist(Normalize) => `normalize`
|
||||
| ToDist(ToPointSet) => `toPointSet`
|
||||
| ToDist(ToSampleSet(r)) => `toSampleSet(${E.I.toString(r)})`
|
||||
|
@ -161,6 +162,10 @@ module Constructors = {
|
|||
let truncate = (dist, left, right): t => FromDist(ToDist(Truncate(left, right)), dist)
|
||||
let inspect = (dist): t => FromDist(ToDist(Inspect), dist)
|
||||
let klDivergence = (dist1, dist2): t => FromDist(ToScore(KLDivergence(dist2)), dist1)
|
||||
let logScoreWithPointResolution = (~prediction, ~answer, ~prior): t => FromDist(
|
||||
ToScore(LogScore(answer, prior)),
|
||||
prediction,
|
||||
)
|
||||
let scalePower = (dist, n): t => FromDist(ToDist(Scale(#Power, n)), dist)
|
||||
let scaleLogarithm = (dist, n): t => FromDist(ToDist(Scale(#Logarithm, n)), dist)
|
||||
let scaleLogarithmWithThreshold = (dist, n, eps): t => FromDist(
|
||||
|
|
|
@ -59,11 +59,44 @@ let integralEndY = (t: t): float =>
|
|||
|
||||
let isNormalized = (t: t): bool => Js.Math.abs_float(integralEndY(t) -. 1.0) < 1e-7
|
||||
|
||||
let klDivergence = (t1, t2, ~toPointSetFn: toPointSetFn): result<float, error> => {
|
||||
let pointSets = E.R.merge(toPointSetFn(t1), toPointSetFn(t2))
|
||||
pointSets |> E.R2.bind(((a, b)) =>
|
||||
PointSetDist.T.klDivergence(a, b)->E.R2.errMap(x => DistributionTypes.OperationError(x))
|
||||
module Score = {
|
||||
let klDivergence = (prediction, answer, ~toPointSetFn: toPointSetFn): result<float, error> => {
|
||||
let pointSets = E.R.merge(toPointSetFn(prediction), toPointSetFn(answer))
|
||||
pointSets |> E.R2.bind(((predi, ans)) =>
|
||||
PointSetDist.T.klDivergence(predi, ans)->E.R2.errMap(x => DistributionTypes.OperationError(x))
|
||||
)
|
||||
}
|
||||
|
||||
let logScoreWithPointResolution = (
|
||||
~prediction: DistributionTypes.genericDist,
|
||||
~answer: float,
|
||||
~prior: option<DistributionTypes.genericDist>,
|
||||
~toPointSetFn: toPointSetFn,
|
||||
): result<float, error> => {
|
||||
switch prior {
|
||||
| Some(prior') =>
|
||||
E.R.merge(toPointSetFn(prior'), toPointSetFn(prediction))->E.R.bind(((
|
||||
prior'',
|
||||
prediction'',
|
||||
)) =>
|
||||
PointSetDist.T.logScoreWithPointResolution(
|
||||
~prediction=prediction'',
|
||||
~answer,
|
||||
~prior=prior''->Some,
|
||||
)->E.R2.errMap(x => DistributionTypes.OperationError(x))
|
||||
)
|
||||
| None =>
|
||||
prediction
|
||||
->toPointSetFn
|
||||
->E.R.bind(x =>
|
||||
PointSetDist.T.logScoreWithPointResolution(
|
||||
~prediction=x,
|
||||
~answer,
|
||||
~prior=None,
|
||||
)->E.R2.errMap(x => DistributionTypes.OperationError(x))
|
||||
)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
let toFloatOperation = (
|
||||
|
|
|
@ -23,7 +23,15 @@ let toFloatOperation: (
|
|||
~distToFloatOperation: DistributionTypes.DistributionOperation.toFloat,
|
||||
) => result<float, error>
|
||||
|
||||
let klDivergence: (t, t, ~toPointSetFn: toPointSetFn) => result<float, error>
|
||||
module Score: {
|
||||
let klDivergence: (t, t, ~toPointSetFn: toPointSetFn) => result<float, error>
|
||||
let logScoreWithPointResolution: (
|
||||
~prediction: t,
|
||||
~answer: float,
|
||||
~prior: option<t>,
|
||||
~toPointSetFn: toPointSetFn,
|
||||
) => result<float, error>
|
||||
}
|
||||
|
||||
@genType
|
||||
let toPointSet: (
|
||||
|
|
|
@ -277,13 +277,12 @@ module T = Dist({
|
|||
prediction.xyShape,
|
||||
answer.xyShape,
|
||||
)
|
||||
let xyShapeToContinuous: XYShape.xyShape => t = xyShape => {
|
||||
xyShape: xyShape,
|
||||
interpolation: #Linear,
|
||||
integralSumCache: None,
|
||||
integralCache: None,
|
||||
newShape->E.R2.fmap(x => x->make->integralEndY)
|
||||
}
|
||||
newShape->E.R2.fmap(x => x->xyShapeToContinuous->integralEndY)
|
||||
let logScoreWithPointResolution = (~prediction: t, ~answer: float, ~prior: option<t>) => {
|
||||
let priorPdf = prior->E.O2.fmap((shape, x) => XYShape.XtoY.linear(x, shape.xyShape))
|
||||
let predictionPdf = x => XYShape.XtoY.linear(x, prediction.xyShape)
|
||||
PointSetDist_Scoring.LogScoreWithPointResolution.score(~priorPdf, ~predictionPdf, ~answer)
|
||||
}
|
||||
})
|
||||
|
||||
|
|
|
@ -229,4 +229,7 @@ module T = Dist({
|
|||
answer,
|
||||
)->E.R2.fmap(integralEndY)
|
||||
}
|
||||
let logScoreWithPointResolution = (~prediction: t, ~answer: float, ~prior: option<t>) => {
|
||||
Error(Operation.NotYetImplemented)
|
||||
}
|
||||
})
|
||||
|
|
|
@ -34,6 +34,11 @@ module type dist = {
|
|||
let mean: t => float
|
||||
let variance: t => float
|
||||
let klDivergence: (t, t) => result<float, Operation.Error.t>
|
||||
let logScoreWithPointResolution: (
|
||||
~prediction: t,
|
||||
~answer: float,
|
||||
~prior: option<t>,
|
||||
) => result<float, Operation.Error.t>
|
||||
}
|
||||
|
||||
module Dist = (T: dist) => {
|
||||
|
@ -57,6 +62,7 @@ module Dist = (T: dist) => {
|
|||
let variance = T.variance
|
||||
let integralEndY = T.integralEndY
|
||||
let klDivergence = T.klDivergence
|
||||
let logScoreWithPointResolution = T.logScoreWithPointResolution
|
||||
|
||||
let updateIntegralCache = T.updateIntegralCache
|
||||
|
||||
|
|
|
@ -306,6 +306,9 @@ module T = Dist({
|
|||
let klContinuousPart = Continuous.T.klDivergence(prediction.continuous, answer.continuous)
|
||||
E.R.merge(klDiscretePart, klContinuousPart)->E.R2.fmap(t => fst(t) +. snd(t))
|
||||
}
|
||||
let logScoreWithPointResolution = (~prediction: t, ~answer: float, ~prior: option<t>) => {
|
||||
Error(Operation.NotYetImplemented)
|
||||
}
|
||||
})
|
||||
|
||||
let combineAlgebraically = (op: Operation.convolutionOperation, t1: t, t2: t): t => {
|
||||
|
|
|
@ -196,12 +196,21 @@ module T = Dist({
|
|||
| Continuous(m) => Continuous.T.variance(m)
|
||||
}
|
||||
|
||||
let klDivergence = (t1: t, t2: t) =>
|
||||
switch (t1, t2) {
|
||||
let klDivergence = (prediction: t, answer: t) =>
|
||||
switch (prediction, answer) {
|
||||
| (Continuous(t1), Continuous(t2)) => Continuous.T.klDivergence(t1, t2)
|
||||
| (Discrete(t1), Discrete(t2)) => Discrete.T.klDivergence(t1, t2)
|
||||
| (Mixed(t1), Mixed(t2)) => Mixed.T.klDivergence(t1, t2)
|
||||
| _ => Error(NotYetImplemented)
|
||||
| (m1, m2) => Mixed.T.klDivergence(m1->toMixed, m2->toMixed)
|
||||
}
|
||||
|
||||
let logScoreWithPointResolution = (~prediction: t, ~answer: float, ~prior: option<t>) => {
|
||||
switch (prior, prediction) {
|
||||
| (Some(Continuous(t1)), Continuous(t2)) =>
|
||||
Continuous.T.logScoreWithPointResolution(~prediction=t2, ~answer, ~prior=t1->Some)
|
||||
| (None, Continuous(t2)) =>
|
||||
Continuous.T.logScoreWithPointResolution(~prediction=t2, ~answer, ~prior=None)
|
||||
| _ => Error(Operation.NotYetImplemented)
|
||||
}
|
||||
}
|
||||
})
|
||||
|
||||
|
|
|
@ -14,3 +14,33 @@ module KLDivergence = {
|
|||
quot < 0.0 ? Error(Operation.ComplexNumberError) : Ok(-.answerElement *. logFn(quot))
|
||||
}
|
||||
}
|
||||
|
||||
module LogScoreWithPointResolution = {
|
||||
let logFn = Js.Math.log
|
||||
let score = (
|
||||
~priorPdf: option<float => float>,
|
||||
~predictionPdf: float => float,
|
||||
~answer: float,
|
||||
): result<float, Operation.Error.t> => {
|
||||
let numerator = answer->predictionPdf
|
||||
if numerator < 0.0 {
|
||||
Operation.PdfInvalidError->Error
|
||||
} else if numerator == 0.0 {
|
||||
infinity->Ok
|
||||
} else {
|
||||
-.(
|
||||
switch priorPdf {
|
||||
| None => numerator->logFn
|
||||
| Some(f) => {
|
||||
let priorDensityOfAnswer = f(answer)
|
||||
if priorDensityOfAnswer == 0.0 {
|
||||
neg_infinity
|
||||
} else {
|
||||
(numerator /. priorDensityOfAnswer)->logFn
|
||||
}
|
||||
}
|
||||
}
|
||||
)->Ok
|
||||
}
|
||||
}
|
||||
}
|
||||
|
|
|
@ -12,6 +12,7 @@ module Epsilon = {
|
|||
module Environment = {
|
||||
let defaultXYPointLength = 1000
|
||||
let defaultSampleCount = 10000
|
||||
let sparklineLength = 20
|
||||
}
|
||||
|
||||
module OpCost = {
|
||||
|
|
|
@ -1,5 +1,5 @@
|
|||
module ExpressionValue = ReducerInterface_ExpressionValue
|
||||
type expressionValue = ReducerInterface_ExpressionValue.expressionValue
|
||||
type expressionValue = ExpressionValue.expressionValue
|
||||
|
||||
module Helpers = {
|
||||
let arithmeticMap = r =>
|
||||
|
@ -162,6 +162,20 @@ module Helpers = {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
let klDivergenceWithPrior = (
|
||||
prediction: DistributionTypes.genericDist,
|
||||
answer: DistributionTypes.genericDist,
|
||||
prior: DistributionTypes.genericDist,
|
||||
env: DistributionOperation.env,
|
||||
) => {
|
||||
let term1 = DistributionOperation.Constructors.klDivergence(~env, prediction, answer)
|
||||
let term2 = DistributionOperation.Constructors.klDivergence(~env, prior, answer)
|
||||
switch E.R.merge(term1, term2)->E.R2.fmap(((a, b)) => a -. b) {
|
||||
| Ok(x) => x->DistributionOperation.Float->Some
|
||||
| Error(_) => None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module SymbolicConstructors = {
|
||||
|
@ -236,7 +250,8 @@ let dispatchToGenericOutput = (
|
|||
| ("mean", [EvDistribution(dist)]) => Helpers.toFloatFn(#Mean, dist, ~env)
|
||||
| ("integralSum", [EvDistribution(dist)]) => Helpers.toFloatFn(#IntegralSum, dist, ~env)
|
||||
| ("toString", [EvDistribution(dist)]) => Helpers.toStringFn(ToString, dist, ~env)
|
||||
| ("toSparkline", [EvDistribution(dist)]) => Helpers.toStringFn(ToSparkline(20), dist, ~env)
|
||||
| ("toSparkline", [EvDistribution(dist)]) =>
|
||||
Helpers.toStringFn(ToSparkline(MagicNumbers.Environment.sparklineLength), dist, ~env)
|
||||
| ("toSparkline", [EvDistribution(dist), EvNumber(n)]) =>
|
||||
Helpers.toStringFn(ToSparkline(Belt.Float.toInt(n)), dist, ~env)
|
||||
| ("exp", [EvDistribution(a)]) =>
|
||||
|
@ -249,8 +264,28 @@ let dispatchToGenericOutput = (
|
|||
~env,
|
||||
)->Some
|
||||
| ("normalize", [EvDistribution(dist)]) => Helpers.toDistFn(Normalize, dist, ~env)
|
||||
| ("klDivergence", [EvDistribution(a), EvDistribution(b)]) =>
|
||||
Some(DistributionOperation.run(FromDist(ToScore(KLDivergence(b)), a), ~env))
|
||||
| ("klDivergence", [EvDistribution(prediction), EvDistribution(answer)]) =>
|
||||
Some(DistributionOperation.run(FromDist(ToScore(KLDivergence(answer)), prediction), ~env))
|
||||
| ("klDivergence", [EvDistribution(prediction), EvDistribution(answer), EvDistribution(prior)]) =>
|
||||
Helpers.klDivergenceWithPrior(prediction, answer, prior, env)
|
||||
| (
|
||||
"logScoreWithPointAnswer",
|
||||
[EvDistribution(prediction), EvNumber(answer), EvDistribution(prior)],
|
||||
)
|
||||
| (
|
||||
"logScoreWithPointAnswer",
|
||||
[EvDistribution(prediction), EvDistribution(Symbolic(#Float(answer))), EvDistribution(prior)],
|
||||
) =>
|
||||
DistributionOperation.run(
|
||||
FromDist(ToScore(LogScore(answer, prior->Some)), prediction),
|
||||
~env,
|
||||
)->Some
|
||||
| ("logScoreWithPointAnswer", [EvDistribution(prediction), EvNumber(answer)])
|
||||
| (
|
||||
"logScoreWithPointAnswer",
|
||||
[EvDistribution(prediction), EvDistribution(Symbolic(#Float(answer)))],
|
||||
) =>
|
||||
DistributionOperation.run(FromDist(ToScore(LogScore(answer, None)), prediction), ~env)->Some
|
||||
| ("isNormalized", [EvDistribution(dist)]) => Helpers.toBoolFn(IsNormalized, dist, ~env)
|
||||
| ("toPointSet", [EvDistribution(dist)]) => Helpers.toDistFn(ToPointSet, dist, ~env)
|
||||
| ("scaleLog", [EvDistribution(dist)]) =>
|
||||
|
|
|
@ -620,6 +620,19 @@ module A = {
|
|||
| Some(o) => o
|
||||
| None => []
|
||||
}
|
||||
// REturns `None` there are no non-`None` elements
|
||||
let rec arrSomeToSomeArr = (optionals: array<option<'a>>): option<array<'a>> => {
|
||||
let optionals' = optionals->Belt.List.fromArray
|
||||
switch optionals' {
|
||||
| list{} => []->Some
|
||||
| list{x, ...xs} =>
|
||||
switch x {
|
||||
| Some(_) => xs->Belt.List.toArray->arrSomeToSomeArr
|
||||
| None => None
|
||||
}
|
||||
}
|
||||
}
|
||||
let firstSome = x => Belt.Array.getBy(x, O.isSome)
|
||||
}
|
||||
|
||||
module R = {
|
||||
|
|
|
@ -55,7 +55,7 @@ type operationError =
|
|||
| ComplexNumberError
|
||||
| InfinityError
|
||||
| NegativeInfinityError
|
||||
| LogicallyInconsistentPathwayError
|
||||
| PdfInvalidError
|
||||
| NotYetImplemented // should be removed when `klDivergence` for mixed and discrete is implemented.
|
||||
|
||||
@genType
|
||||
|
@ -69,7 +69,7 @@ module Error = {
|
|||
| ComplexNumberError => "Operation returned complex result"
|
||||
| InfinityError => "Operation returned positive infinity"
|
||||
| NegativeInfinityError => "Operation returned negative infinity"
|
||||
| LogicallyInconsistentPathwayError => "This pathway should have been logically unreachable"
|
||||
| PdfInvalidError => "This Pdf is invalid"
|
||||
| NotYetImplemented => "This pathway is not yet implemented"
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Reference in New Issue
Block a user