Fix multiplication of variances in ShapeConvolution
This commit is contained in:
parent
ca9f725ae7
commit
730dbddaf9
|
@ -80,15 +80,20 @@ let toDiscretePointMassesFromTriangulars =
|
|||
{n: n - 2, masses, means, variances};
|
||||
} else {
|
||||
for (i in 1 to n - 2) {
|
||||
|
||||
// area of triangle = width * height / 2
|
||||
let _ =
|
||||
Belt.Array.set(
|
||||
masses,
|
||||
i - 1,
|
||||
(xs[i + 1] -. xs[i - 1]) *. ys[i] /. 2.,
|
||||
);
|
||||
|
||||
// means of triangle = (a + b + c) / 3
|
||||
let _ =
|
||||
Belt.Array.set(means, i - 1, (xs[i - 1] +. xs[i] +. xs[i + 1]) /. 3.);
|
||||
|
||||
// variance of triangle = (a^2 + b^2 + c^2 - ab - ac - bc) / 18
|
||||
let _ =
|
||||
Belt.Array.set(
|
||||
variances,
|
||||
|
@ -118,7 +123,10 @@ let combineShapesContinuousContinuous =
|
|||
// if we add the two distributions, we should probably use normal filters.
|
||||
// if we multiply the two distributions, we should probably use lognormal filters.
|
||||
let t1m = toDiscretePointMassesFromTriangulars(s1);
|
||||
let t2m = toDiscretePointMassesFromTriangulars(s2);
|
||||
let t2m = switch (op) {
|
||||
| `Divide => toDiscretePointMassesFromTriangulars(~inverse=true, s2)
|
||||
| _ => toDiscretePointMassesFromTriangulars(~inverse=false, s2)
|
||||
};
|
||||
|
||||
let combineMeansFn =
|
||||
switch (op) {
|
||||
|
@ -134,7 +142,7 @@ let combineShapesContinuousContinuous =
|
|||
| `Add => ((v1, v2, m1, m2) => v1 +. v2)
|
||||
| `Subtract => ((v1, v2, m1, m2) => v1 +. v2)
|
||||
| `Multiply => (
|
||||
(v1, v2, m1, m2) => v1 *. v2 +. v1 *. m1 ** 2. +. v2 *. m1 ** 2.
|
||||
(v1, v2, m1, m2) => v1 *. v2 +. v1 *. m2 ** 2. +. v2 *. m1 ** 2.
|
||||
)
|
||||
| `Divide => (
|
||||
(v1, vInv2, m1, mInv2) =>
|
||||
|
@ -142,6 +150,7 @@ let combineShapesContinuousContinuous =
|
|||
)
|
||||
};
|
||||
|
||||
// TODO: If operating on two positive-domain distributions, we should take that into account
|
||||
let outputMinX: ref(float) = ref(infinity);
|
||||
let outputMaxX: ref(float) = ref(neg_infinity);
|
||||
let masses: array(float) =
|
||||
|
@ -180,20 +189,22 @@ let combineShapesContinuousContinuous =
|
|||
|
||||
// we now want to create a set of target points. For now, let's just evenly distribute 200 points between
|
||||
// between the outputMinX and outputMaxX
|
||||
let outputXs: array(float) =
|
||||
E.A.Floats.range(outputMinX^, outputMaxX^, 200);
|
||||
let outputYs: array(float) = Belt.Array.make(200, 0.0);
|
||||
let nOut = 300;
|
||||
let outputXs: array(float) = E.A.Floats.range(outputMinX^, outputMaxX^, nOut);
|
||||
let outputYs: array(float) = Belt.Array.make(nOut, 0.0);
|
||||
// now, for each of the outputYs, accumulate from a Gaussian kernel over each input point.
|
||||
for (i in 0 to E.A.length(outputXs) - 1) {
|
||||
for (j in 0 to E.A.length(masses) - 1) {
|
||||
let dx = outputXs[i] -. means[j];
|
||||
let contribution =
|
||||
masses[j] *. exp(-. (dx ** 2.) /. (2. *. variances[j]));
|
||||
let _ = Belt.Array.set(outputYs, i, outputYs[i] +. contribution);
|
||||
for (j in 0 to E.A.length(masses) - 1) {
|
||||
let _ = if (variances[j] > 0.) {
|
||||
for (i in 0 to E.A.length(outputXs) - 1) {
|
||||
let dx = outputXs[i] -. means[j];
|
||||
let contribution = masses[j] *. exp(-. (dx ** 2.) /. (2. *. variances[j]));
|
||||
let _ = Belt.Array.set(outputYs, i, outputYs[i] +. contribution);
|
||||
();
|
||||
};
|
||||
();
|
||||
};
|
||||
();
|
||||
};
|
||||
|
||||
{xs: outputXs, ys: outputYs};
|
||||
};
|
||||
};
|
||||
|
|
Loading…
Reference in New Issue
Block a user