Merge pull request #239 from quantified-uncertainty/format-pass

`yarn format`
This commit is contained in:
Quinn 2022-04-12 20:29:01 -04:00 committed by GitHub
commit 71f8a8bb06
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
27 changed files with 284 additions and 282 deletions

View File

@ -2,7 +2,8 @@
"private": true,
"name": "squiggle",
"scripts": {
"nodeclean": "rm -r node_modules && rm -r packages/*/node_modules"
"nodeclean": "rm -r node_modules && rm -r packages/*/node_modules",
"format:all": "prettier --write . && cd packages/squiggle-lang && yarn format"
},
"devDependencies": {
"prettier": "^2.6.2"

View File

@ -4,10 +4,10 @@ open Expect
describe("Bandwidth", () => {
test("nrd0()", () => {
let data = [1., 4., 3., 2.]
expect(SampleSetDist_Bandwidth.nrd0(data)) -> toEqual(0.7625801874014622)
expect(SampleSetDist_Bandwidth.nrd0(data))->toEqual(0.7625801874014622)
})
test("nrd()", () => {
let data = [1., 4., 3., 2.]
expect(SampleSetDist_Bandwidth.nrd(data)) -> toEqual(0.8981499984950554)
expect(SampleSetDist_Bandwidth.nrd(data))->toEqual(0.8981499984950554)
})
})

View File

@ -6,6 +6,8 @@ let normalDist: GenericDist_Types.genericDist = normalDist5
let betaDist: GenericDist_Types.genericDist = Symbolic(#Beta({alpha: 2.0, beta: 5.0}))
let lognormalDist: GenericDist_Types.genericDist = Symbolic(#Lognormal({mu: 0.0, sigma: 1.0}))
let cauchyDist: GenericDist_Types.genericDist = Symbolic(#Cauchy({local: 1.0, scale: 1.0}))
let triangularDist: GenericDist_Types.genericDist = Symbolic(#Triangular({low: 1.0, medium: 2.0, high: 3.0}))
let triangularDist: GenericDist_Types.genericDist = Symbolic(
#Triangular({low: 1.0, medium: 2.0, high: 3.0}),
)
let exponentialDist: GenericDist_Types.genericDist = Symbolic(#Exponential({rate: 2.0}))
let uniformDist: GenericDist_Types.genericDist = Symbolic(#Uniform({low: 9.0, high: 10.0}))

View File

@ -11,14 +11,20 @@ let mkCauchy = (local, scale) => GenericDist_Types.Symbolic(#Cauchy({local: loca
let mkLognormal = (mu, sigma) => GenericDist_Types.Symbolic(#Lognormal({mu: mu, sigma: sigma}))
describe("mixture", () => {
testAll("fair mean of two normal distributions", list{(0.0, 1e2), (-1e1, -1e-4), (-1e1, 1e2), (-1e1, 1e1)}, tup => { // should be property
testAll(
"fair mean of two normal distributions",
list{(0.0, 1e2), (-1e1, -1e-4), (-1e1, 1e2), (-1e1, 1e1)},
tup => {
// should be property
let (mean1, mean2) = tup
let meanValue = {
run(Mixture([(mkNormal(mean1, 9e-1), 0.5), (mkNormal(mean2, 9e-1), 0.5)]))
-> outputMap(FromDist(ToFloat(#Mean)))
run(Mixture([(mkNormal(mean1, 9e-1), 0.5), (mkNormal(mean2, 9e-1), 0.5)]))->outputMap(
FromDist(ToFloat(#Mean)),
)
}
meanValue -> unpackFloat -> expect -> toBeSoCloseTo((mean1 +. mean2) /. 2.0, ~digits=-1)
})
meanValue->unpackFloat->expect->toBeSoCloseTo((mean1 +. mean2) /. 2.0, ~digits=-1)
},
)
testAll(
"weighted mean of a beta and an exponential",
// This would not survive property testing, it was easy for me to find cases that NaN'd out.
@ -28,43 +34,40 @@ describe("mixture", () => {
let betaWeight = 0.25
let exponentialWeight = 0.75
let meanValue = {
run(Mixture(
[
(mkBeta(alpha, beta), betaWeight),
(mkExponential(rate), exponentialWeight)
]
)) -> outputMap(FromDist(ToFloat(#Mean)))
run(
Mixture([(mkBeta(alpha, beta), betaWeight), (mkExponential(rate), exponentialWeight)]),
)->outputMap(FromDist(ToFloat(#Mean)))
}
let betaMean = 1.0 /. (1.0 +. beta /. alpha)
let exponentialMean = 1.0 /. rate
meanValue
-> unpackFloat
-> expect
-> toBeSoCloseTo(
betaWeight *. betaMean +. exponentialWeight *. exponentialMean,
~digits=-1
)
}
->unpackFloat
->expect
->toBeSoCloseTo(betaWeight *. betaMean +. exponentialWeight *. exponentialMean, ~digits=-1)
},
)
testAll(
"weighted mean of lognormal and uniform",
// Would not survive property tests: very easy to find cases that NaN out.
list{((-1e2,1e1), (2e0,1e0)), ((-1e-16,1e-16), (1e-8,1e0)), ((0.0,1e0), (1e0,1e-2))},
list{((-1e2, 1e1), (2e0, 1e0)), ((-1e-16, 1e-16), (1e-8, 1e0)), ((0.0, 1e0), (1e0, 1e-2))},
tup => {
let ((low, high), (mu, sigma)) = tup
let uniformWeight = 0.6
let lognormalWeight = 0.4
let meanValue = {
run(Mixture([(mkUniform(low, high), uniformWeight), (mkLognormal(mu, sigma), lognormalWeight)]))
-> outputMap(FromDist(ToFloat(#Mean)))
run(
Mixture([
(mkUniform(low, high), uniformWeight),
(mkLognormal(mu, sigma), lognormalWeight),
]),
)->outputMap(FromDist(ToFloat(#Mean)))
}
let uniformMean = (low +. high) /. 2.0
let lognormalMean = mu +. sigma ** 2.0 /. 2.0
meanValue
-> unpackFloat
-> expect
-> toBeSoCloseTo(uniformWeight *. uniformMean +. lognormalWeight *. lognormalMean, ~digits=-1)
}
->unpackFloat
->expect
->toBeSoCloseTo(uniformWeight *. uniformMean +. lognormalWeight *. lognormalMean, ~digits=-1)
},
)
})

View File

@ -38,4 +38,3 @@ describe("Continuous and discrete splits", () => {
let toArr2 = discrete2 |> E.FloatFloatMap.toArray
makeTest("splitMedium at count=500", toArr2 |> Belt.Array.length, 500)
})

View File

@ -9,121 +9,105 @@ describe("(Symbolic) normalize", () => {
testAll("has no impact on normal distributions", list{-1e8, -1e-2, 0.0, 1e-4, 1e16}, mean => {
let normalValue = mkNormal(mean, 2.0)
let normalizedValue = run(FromDist(ToDist(Normalize), normalValue))
normalizedValue
-> unpackDist
-> expect
-> toEqual(normalValue)
normalizedValue->unpackDist->expect->toEqual(normalValue)
})
})
describe("(Symbolic) mean", () => {
testAll("of normal distributions", list{-1e8, -16.0, -1e-2, 0.0, 1e-4, 32.0, 1e16}, mean => {
run(FromDist(ToFloat(#Mean), mkNormal(mean, 4.0)))
-> unpackFloat
-> expect
-> toBeCloseTo(mean)
run(FromDist(ToFloat(#Mean), mkNormal(mean, 4.0)))->unpackFloat->expect->toBeCloseTo(mean)
})
Skip.test("of normal(0, -1) (it NaNs out)", () => {
run(FromDist(ToFloat(#Mean), mkNormal(1e1, -1e0)))
-> unpackFloat
-> expect
-> ExpectJs.toBeFalsy
run(FromDist(ToFloat(#Mean), mkNormal(1e1, -1e0)))->unpackFloat->expect->ExpectJs.toBeFalsy
})
test("of normal(0, 1e-8) (it doesn't freak out at tiny stdev)", () => {
run(FromDist(ToFloat(#Mean), mkNormal(0.0, 1e-8)))
-> unpackFloat
-> expect
-> toBeCloseTo(0.0)
run(FromDist(ToFloat(#Mean), mkNormal(0.0, 1e-8)))->unpackFloat->expect->toBeCloseTo(0.0)
})
testAll("of exponential distributions", list{1e-7, 2.0, 10.0, 100.0}, rate => {
let meanValue = run(FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Exponential({rate: rate}))))
meanValue -> unpackFloat -> expect -> toBeCloseTo(1.0 /. rate) // https://en.wikipedia.org/wiki/Exponential_distribution#Mean,_variance,_moments,_and_median
let meanValue = run(
FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Exponential({rate: rate}))),
)
meanValue->unpackFloat->expect->toBeCloseTo(1.0 /. rate) // https://en.wikipedia.org/wiki/Exponential_distribution#Mean,_variance,_moments,_and_median
})
test("of a cauchy distribution", () => {
let meanValue = run(FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Cauchy({local: 1.0, scale: 1.0}))))
meanValue
-> unpackFloat
-> expect
-> toBeCloseTo(2.01868297874546)
let meanValue = run(
FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Cauchy({local: 1.0, scale: 1.0}))),
)
meanValue->unpackFloat->expect->toBeCloseTo(2.01868297874546)
//-> toBe(GenDistError(Other("Cauchy distributions may have no mean value.")))
})
testAll("of triangular distributions", list{(1.0,2.0,3.0), (-1e7,-1e-7,1e-7), (-1e-7,1e0,1e7), (-1e-16,0.0,1e-16)}, tup => {
testAll(
"of triangular distributions",
list{(1.0, 2.0, 3.0), (-1e7, -1e-7, 1e-7), (-1e-7, 1e0, 1e7), (-1e-16, 0.0, 1e-16)},
tup => {
let (low, medium, high) = tup
let meanValue = run(FromDist(
let meanValue = run(
FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Triangular({low: low, medium: medium, high: high}))
))
meanValue
-> unpackFloat
-> expect
-> toBeCloseTo((low +. medium +. high) /. 3.0) // https://www.statology.org/triangular-distribution/
})
GenericDist_Types.Symbolic(#Triangular({low: low, medium: medium, high: high})),
),
)
meanValue->unpackFloat->expect->toBeCloseTo((low +. medium +. high) /. 3.0) // https://www.statology.org/triangular-distribution/
},
)
// TODO: nonpositive inputs are SUPPOSED to crash.
testAll("of beta distributions", list{(1e-4, 6.4e1), (1.28e2, 1e0), (1e-16, 1e-16), (1e16, 1e16), (-1e4, 1e1), (1e1, -1e4)}, tup => {
testAll(
"of beta distributions",
list{(1e-4, 6.4e1), (1.28e2, 1e0), (1e-16, 1e-16), (1e16, 1e16), (-1e4, 1e1), (1e1, -1e4)},
tup => {
let (alpha, beta) = tup
let meanValue = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Beta({alpha: alpha, beta: beta}))
))
meanValue
-> unpackFloat
-> expect
-> toBeCloseTo(1.0 /. (1.0 +. (beta /. alpha))) // https://en.wikipedia.org/wiki/Beta_distribution#Mean
})
let meanValue = run(
FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Beta({alpha: alpha, beta: beta}))),
)
meanValue->unpackFloat->expect->toBeCloseTo(1.0 /. (1.0 +. beta /. alpha)) // https://en.wikipedia.org/wiki/Beta_distribution#Mean
},
)
// TODO: When we have our theory of validators we won't want this to be NaN but to be an error.
test("of beta(0, 0)", () => {
let meanValue = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Beta({alpha: 0.0, beta: 0.0}))
))
meanValue
-> unpackFloat
-> expect
-> ExpectJs.toBeFalsy
let meanValue = run(
FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Beta({alpha: 0.0, beta: 0.0}))),
)
meanValue->unpackFloat->expect->ExpectJs.toBeFalsy
})
testAll("of lognormal distributions", list{(2.0, 4.0), (1e-7, 1e-2), (-1e6, 10.0), (1e3, -1e2), (-1e8, -1e4), (1e2, 1e-5)}, tup => {
testAll(
"of lognormal distributions",
list{(2.0, 4.0), (1e-7, 1e-2), (-1e6, 10.0), (1e3, -1e2), (-1e8, -1e4), (1e2, 1e-5)},
tup => {
let (mu, sigma) = tup
let meanValue = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Lognormal({mu: mu, sigma: sigma}))
))
meanValue
-> unpackFloat
-> expect
-> toBeCloseTo(Js.Math.exp(mu +. sigma ** 2.0 /. 2.0 )) // https://brilliant.org/wiki/log-normal-distribution/
})
let meanValue = run(
FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Lognormal({mu: mu, sigma: sigma}))),
)
meanValue->unpackFloat->expect->toBeCloseTo(Js.Math.exp(mu +. sigma ** 2.0 /. 2.0)) // https://brilliant.org/wiki/log-normal-distribution/
},
)
testAll("of uniform distributions", list{(1e-5, 12.345), (-1e4, 1e4), (-1e16, -1e2), (5.3e3, 9e9)}, tup => {
testAll(
"of uniform distributions",
list{(1e-5, 12.345), (-1e4, 1e4), (-1e16, -1e2), (5.3e3, 9e9)},
tup => {
let (low, high) = tup
let meanValue = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Uniform({low: low, high: high}))
))
meanValue
-> unpackFloat
-> expect
-> toBeCloseTo((low +. high) /. 2.0) // https://en.wikipedia.org/wiki/Continuous_uniform_distribution#Moments
})
let meanValue = run(
FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Uniform({low: low, high: high}))),
)
meanValue->unpackFloat->expect->toBeCloseTo((low +. high) /. 2.0) // https://en.wikipedia.org/wiki/Continuous_uniform_distribution#Moments
},
)
test("of a float", () => {
let meanValue = run(FromDist(
ToFloat(#Mean),
GenericDist_Types.Symbolic(#Float(7.7))
))
meanValue -> unpackFloat -> expect -> toBeCloseTo(7.7)
let meanValue = run(FromDist(ToFloat(#Mean), GenericDist_Types.Symbolic(#Float(7.7))))
meanValue->unpackFloat->expect->toBeCloseTo(7.7)
})
})
describe("Normal distribution with sparklines", () => {
let parameterWiseAdditionPdf = (n1: SymbolicDistTypes.normal, n2: SymbolicDistTypes.normal) => {
let normalDistAtSumMeanConstr = SymbolicDist.Normal.add(n1, n2)
let normalDistAtSumMean: SymbolicDistTypes.normal = switch normalDistAtSumMeanConstr {
@ -140,22 +124,23 @@ describe("Normal distribution with sparklines", () => {
let pdfNormalDistAtMean5 = x => SymbolicDist.Normal.pdf(x, normalDistAtMean5)
let sparklineMean5 = fnImage(pdfNormalDistAtMean5, range20Float)
Sparklines.create(sparklineMean5, ())
-> expect
-> toEqual(`▁▂▃▆██▇▅▂▁▁▁▁▁▁▁▁▁▁▁`)
->expect
->toEqual(`▁▂▃▆██▇▅▂▁▁▁▁▁▁▁▁▁▁▁`)
})
test("parameter-wise addition of two normal distributions", () => {
let sparklineMean15 = normalDistAtMean5 -> parameterWiseAdditionPdf(normalDistAtMean10) -> fnImage(range20Float)
let sparklineMean15 =
normalDistAtMean5->parameterWiseAdditionPdf(normalDistAtMean10)->fnImage(range20Float)
Sparklines.create(sparklineMean15, ())
-> expect
-> toEqual(`▁▁▁▁▁▁▁▁▁▂▃▄▆███▇▅▄▂`)
->expect
->toEqual(`▁▁▁▁▁▁▁▁▁▂▃▄▆███▇▅▄▂`)
})
test("mean=10 cdf", () => {
let cdfNormalDistAtMean10 = x => SymbolicDist.Normal.cdf(x, normalDistAtMean10)
let sparklineMean10 = fnImage(cdfNormalDistAtMean10, range20Float)
Sparklines.create(sparklineMean10, ())
-> expect
-> toEqual(`▁▁▁▁▁▁▁▁▂▄▅▇████████`)
->expect
->toEqual(`▁▁▁▁▁▁▁▁▂▄▅▇████████`)
})
})

View File

@ -3,8 +3,8 @@ open Expect
let makeTest = (~only=false, str, item1, item2) =>
only
? Only.test(str, () => expect(item1) -> toEqual(item2))
: test(str, () => expect(item1) -> toEqual(item2))
? Only.test(str, () => expect(item1)->toEqual(item2))
: test(str, () => expect(item1)->toEqual(item2))
describe("Lodash", () =>
describe("Lodash", () => {

View File

@ -6,8 +6,7 @@ open Expect
let expectEvalToBe = (expr: string, answer: string) =>
Reducer.evaluate(expr)->ExpressionValue.toStringResult->expect->toBe(answer)
let testEval = (expr, answer) =>
test(expr, () => expectEvalToBe(expr, answer))
let testEval = (expr, answer) => test(expr, () => expectEvalToBe(expr, answer))
describe("builtin", () => {
// All MathJs operators and functions are available for string, number and boolean

View File

@ -14,7 +14,8 @@ let testDescriptionParse = (desc, expr, answer) => test(desc, () => expectParseT
module MySkip = {
let testParse = (expr, answer) => Skip.test(expr, () => expectParseToBe(expr, answer))
let testDescriptionParse = (desc, expr, answer) => Skip.test(desc, () => expectParseToBe(expr, answer))
let testDescriptionParse = (desc, expr, answer) =>
Skip.test(desc, () => expectParseToBe(expr, answer))
}
describe("MathJs parse", () => {
@ -60,7 +61,8 @@ describe("MathJs parse", () => {
MySkip.testDescriptionParse("define", "# This is a comment", "???")
})
describe("if statement", () => { // TODO Tertiary operator instead
describe("if statement", () => {
// TODO Tertiary operator instead
MySkip.testDescriptionParse("define", "if (true) { 1 } else { 0 }", "???")
})
})

View File

@ -3,7 +3,8 @@ open Reducer_TestHelpers
let testParseToBe = (expr, answer) => test(expr, () => expectParseToBe(expr, answer))
let testDescriptionParseToBe = (desc, expr, answer) => test(desc, () => expectParseToBe(expr, answer))
let testDescriptionParseToBe = (desc, expr, answer) =>
test(desc, () => expectParseToBe(expr, answer))
let testEvalToBe = (expr, answer) => test(expr, () => expectEvalToBe(expr, answer))
@ -44,13 +45,21 @@ describe("reducer using mathjs parse", () => {
})
describe("multi-line", () => {
testParseToBe("1; 2", "Ok((:$$bindExpression (:$$bindStatement (:$$bindings) 1) 2))")
testParseToBe("1+1; 2+1", "Ok((:$$bindExpression (:$$bindStatement (:$$bindings) (:add 1 1)) (:add 2 1)))")
testParseToBe(
"1+1; 2+1",
"Ok((:$$bindExpression (:$$bindStatement (:$$bindings) (:add 1 1)) (:add 2 1)))",
)
})
describe("assignment", () => {
testParseToBe("x=1; x", "Ok((:$$bindExpression (:$$bindStatement (:$$bindings) (:$let :x 1)) :x))")
testParseToBe("x=1+1; x+1", "Ok((:$$bindExpression (:$$bindStatement (:$$bindings) (:$let :x (:add 1 1))) (:add :x 1)))")
testParseToBe(
"x=1; x",
"Ok((:$$bindExpression (:$$bindStatement (:$$bindings) (:$let :x 1)) :x))",
)
testParseToBe(
"x=1+1; x+1",
"Ok((:$$bindExpression (:$$bindStatement (:$$bindings) (:$let :x (:add 1 1))) (:add :x 1)))",
)
})
})
describe("eval", () => {
@ -101,5 +110,9 @@ describe("test exceptions", () => {
"javascriptraise('div by 0')",
"Error(JS Exception: Error: 'div by 0')",
)
testDescriptionEvalToBe("rescript exception", "rescriptraise()", "Error(TODO: unhandled rescript exception)")
testDescriptionEvalToBe(
"rescript exception",
"rescriptraise()",
"Error(TODO: unhandled rescript exception)",
)
})

View File

@ -111,7 +111,11 @@ describe("parse on distribution functions", () => {
})
describe("pointwise arithmetic expressions", () => {
testParse(~skip=true, "normal(5,2) .+ normal(5,1)", "Ok((:dotAdd (:normal 5 2) (:normal 5 1)))")
testParse(~skip=true, "normal(5,2) .- normal(5,1)", "Ok((:dotSubtract (:normal 5 2) (:normal 5 1)))")
testParse(
~skip=true,
"normal(5,2) .- normal(5,1)",
"Ok((:dotSubtract (:normal 5 2) (:normal 5 1)))",
)
testParse("normal(5,2) .* normal(5,1)", "Ok((:dotMultiply (:normal 5 2) (:normal 5 1)))")
testParse("normal(5,2) ./ normal(5,1)", "Ok((:dotDivide (:normal 5 2) (:normal 5 1)))")
testParse("normal(5,2) .^ normal(5,1)", "Ok((:dotPow (:normal 5 2) (:normal 5 1)))")

View File

@ -3,9 +3,8 @@ open Expect
let makeTest = (~only=false, str, item1, item2) =>
only
? Only.test(str, () => expect(item1) -> toEqual(item2))
: test(str, () => expect(item1) -> toEqual(item2))
? Only.test(str, () => expect(item1)->toEqual(item2))
: test(str, () => expect(item1)->toEqual(item2))
let {toFloat, toDist, toString, toError, fmap} = module(DistributionOperation.Output)
@ -20,7 +19,9 @@ let run = DistributionOperation.run(~env)
let outputMap = fmap(~env)
let unreachableInTestFileMessage = "Should be impossible to reach (This error is in test file)"
let toExtFloat: option<float> => float = E.O.toExt(unreachableInTestFileMessage)
let toExtDist: option<GenericDist_Types.genericDist> => GenericDist_Types.genericDist = E.O.toExt(unreachableInTestFileMessage)
let toExtDist: option<GenericDist_Types.genericDist> => GenericDist_Types.genericDist = E.O.toExt(
unreachableInTestFileMessage,
)
// let toExt: option<'a> => 'a = E.O.toExt(unreachableInTestFileMessage)
let unpackFloat = x => x -> toFloat -> toExtFloat
let unpackDist = y => y -> toDist -> toExtDist
let unpackFloat = x => x->toFloat->toExtFloat
let unpackDist = y => y->toDist->toExtDist

View File

@ -3,8 +3,8 @@ open Expect
let makeTest = (~only=false, str, item1, item2) =>
only
? Only.test(str, () => expect(item1) -> toEqual(item2))
: test(str, () => expect(item1) -> toEqual(item2))
? Only.test(str, () => expect(item1)->toEqual(item2))
: test(str, () => expect(item1)->toEqual(item2))
let pointSetDist1: PointSetTypes.xyShape = {xs: [1., 4., 8.], ys: [0.2, 0.4, 0.8]}
@ -21,7 +21,11 @@ let pointSetDist3: PointSetTypes.xyShape = {
describe("XYShapes", () => {
describe("logScorePoint", () => {
makeTest("When identical", XYShape.logScorePoint(30, pointSetDist1, pointSetDist1), Some(0.0))
makeTest("When similar", XYShape.logScorePoint(30, pointSetDist1, pointSetDist2), Some(1.658971191043856))
makeTest(
"When similar",
XYShape.logScorePoint(30, pointSetDist1, pointSetDist2),
Some(1.658971191043856),
)
makeTest(
"When very different",
XYShape.logScorePoint(30, pointSetDist1, pointSetDist3),

View File

@ -56,12 +56,7 @@ module Constructors: {
@genType
let toSampleSet: (~env: env, genericDist, int) => result<genericDist, error>
@genType
let truncate: (
~env: env,
genericDist,
option<float>,
option<float>,
) => result<genericDist, error>
let truncate: (~env: env, genericDist, option<float>, option<float>) => result<genericDist, error>
@genType
let inspect: (~env: env, genericDist) => result<genericDist, error>
@genType

View File

@ -55,7 +55,11 @@ module DistributionOperation = {
type fromDist =
| ToFloat(Operation.toFloat)
| ToDist(toDist)
| ToDistCombination(Operation.direction, Operation.arithmeticOperation, [#Dist(genericDist) | #Float(float)])
| ToDistCombination(
Operation.direction,
Operation.arithmeticOperation,
[#Dist(genericDist) | #Float(float)],
)
| ToString
type singleParamaterFunction =

View File

@ -100,7 +100,6 @@ let combineShapesContinuousContinuous = (
s1: PointSetTypes.xyShape,
s2: PointSetTypes.xyShape,
): PointSetTypes.xyShape => {
// if we add the two distributions, we should probably use normal filters.
// if we multiply the two distributions, we should probably use lognormal filters.
let t1m = toDiscretePointMassesFromTriangulars(s1)

View File

@ -235,18 +235,10 @@ module T = Dist({
let indefiniteIntegralStepwise = (p, h1) => h1 *. p ** 2.0 /. 2.0
let indefiniteIntegralLinear = (p, a, b) => a *. p ** 2.0 /. 2.0 +. b *. p ** 3.0 /. 3.0
Analysis.integrate(
~indefiniteIntegralStepwise,
~indefiniteIntegralLinear,
t,
)
Analysis.integrate(~indefiniteIntegralStepwise, ~indefiniteIntegralLinear, t)
}
let variance = (t: t): float =>
XYShape.Analysis.getVarianceDangerously(
t,
mean,
Analysis.getMeanOfSquares,
)
XYShape.Analysis.getVarianceDangerously(t, mean, Analysis.getMeanOfSquares)
})
let downsampleEquallyOverX = (length, t): t =>

View File

@ -212,8 +212,7 @@ module T = Dist({
let totalIntegralSum = discreteIntegralSum +. continuousIntegralSum
let getMeanOfSquares = ({discrete, continuous}: t) => {
let discreteMean =
discrete |> Discrete.shapeMap(XYShape.T.square) |> Discrete.T.mean
let discreteMean = discrete |> Discrete.shapeMap(XYShape.T.square) |> Discrete.T.mean
let continuousMean = continuous |> Continuous.Analysis.getMeanOfSquares
(discreteMean *. discreteIntegralSum +. continuousMean *. continuousIntegralSum) /.
totalIntegralSum

View File

@ -14,10 +14,10 @@ type distributionType = [
| #CDF
]
type xyShape = XYShape.xyShape;
type interpolationStrategy = XYShape.interpolationStrategy;
type extrapolationStrategy = XYShape.extrapolationStrategy;
type interpolator = XYShape.extrapolationStrategy;
type xyShape = XYShape.xyShape
type interpolationStrategy = XYShape.interpolationStrategy
type extrapolationStrategy = XYShape.extrapolationStrategy
type interpolator = XYShape.extrapolationStrategy
@genType
type rec continuousShape = {

View File

@ -346,7 +346,11 @@ module T = {
| _ => #NoSolution
}
let toPointSetDist = (~xSelection=#ByWeight, sampleCount, d: symbolicDist): PointSetTypes.pointSetDist =>
let toPointSetDist = (
~xSelection=#ByWeight,
sampleCount,
d: symbolicDist,
): PointSetTypes.pointSetDist =>
switch d {
| #Float(v) => Discrete(Discrete.make(~integralSumCache=Some(1.0), {xs: [v], ys: [1.0]}))
| _ =>

View File

@ -22,7 +22,7 @@ let makeSymbolicFromTwoFloats = (name, fn) =>
~inputTypes=[#Float, #Float],
~run=x =>
switch x {
| [#Float(a), #Float(b)] => fn(a, b) |> E.R.fmap(r => (#SymbolicDist(r)))
| [#Float(a), #Float(b)] => fn(a, b) |> E.R.fmap(r => #SymbolicDist(r))
| e => wrongInputsError(e)
},
(),
@ -90,7 +90,8 @@ let floatFromDist = (
switch t {
| #SymbolicDist(s) =>
SymbolicDist.T.operate(distToFloatOp, s) |> E.R.bind(_, v => Ok(#SymbolicDist(#Float(v))))
| #RenderedDist(rs) => PointSetDist.operate(distToFloatOp, rs) |> (v => Ok(#SymbolicDist(#Float(v))))
| #RenderedDist(rs) =>
PointSetDist.operate(distToFloatOp, rs) |> (v => Ok(#SymbolicDist(#Float(v))))
}
let verticalScaling = (scaleOp, rs, scaleBy) => {
@ -125,10 +126,15 @@ module Multimodal = {
->E.R.bind(TypeSystem.TypedValue.toArray)
->E.R.bind(r => r |> E.A.fmap(TypeSystem.TypedValue.toFloat) |> E.A.R.firstErrorOrOpen)
E.R.merge(dists, weights) -> E.R.bind(((a, b)) =>
E.A.length(b) > E.A.length(a) ?
Error("Too many weights provided") :
Ok(E.A.zipMaxLength(a, b) |> E.A.fmap(((a, b)) => (a |> E.O.toExn(""), b |> E.O.default(1.0))))
E.R.merge(dists, weights)->E.R.bind(((a, b)) =>
E.A.length(b) > E.A.length(a)
? Error("Too many weights provided")
: Ok(
E.A.zipMaxLength(a, b) |> E.A.fmap(((a, b)) => (
a |> E.O.toExn(""),
b |> E.O.default(1.0),
)),
)
)
| _ => Error("Needs items")
}

View File

@ -86,11 +86,7 @@ module TypedValue = {
|> E.R.fmap(r => #Array(r))
| (#Hash(named), #Hash(r)) =>
let keyValues =
named |> E.A.fmap(((name, intendedType)) => (
name,
intendedType,
Hash.getByName(r, name),
))
named |> E.A.fmap(((name, intendedType)) => (name, intendedType, Hash.getByName(r, name)))
let typedHash =
keyValues
|> E.A.fmap(((name, intendedType, optionNode)) =>
@ -180,11 +176,7 @@ module Function = {
_coerceInputNodes(evaluationParams, t.inputTypes, t.shouldCoerceTypes),
)
let run = (
evaluationParams: ASTTypes.evaluationParams,
inputNodes: inputNodes,
t: t,
) =>
let run = (evaluationParams: ASTTypes.evaluationParams, inputNodes: inputNodes, t: t) =>
inputsToTypedValues(evaluationParams, inputNodes, t)->E.R.bind(t.run)
|> (
x =>

View File

@ -179,11 +179,12 @@ module R = {
}
module R2 = {
let fmap = (a,b) => R.fmap(b,a)
let fmap = (a, b) => R.fmap(b, a)
let bind = (a, b) => R.bind(b, a)
//Converts result type to change error type only
let errMap = (a, map) => switch(a){
let errMap = (a, map) =>
switch a {
| Ok(r) => Ok(r)
| Error(e) => map(e)
}
@ -300,7 +301,6 @@ module A = {
|> Rationale.Result.return
}
// This zips while taking the longest elements of each array.
let zipMaxLength = (array1, array2) => {
let maxLength = Int.max(length(array1), length(array2))
@ -456,7 +456,6 @@ module A = {
let diff = (arr: array<float>): array<float> =>
Belt.Array.zipBy(arr, Belt.Array.sliceToEnd(arr, 1), (left, right) => right -. left)
exception RangeError(string)
let range = (min: float, max: float, n: int): array<float> =>
switch n {
@ -474,7 +473,7 @@ module A = {
}
module A2 = {
let fmap = (a,b) => A.fmap(b,a)
let fmap = (a, b) => A.fmap(b, a)
let joinWith = (a, b) => A.joinWith(b, a)
}

View File

@ -36,8 +36,8 @@ module Exponential = {
@module("jstat") @scope("exponential") external pdf: (float, float) => float = "pdf"
@module("jstat") @scope("exponential") external cdf: (float, float) => float = "cdf"
@module("jstat") @scope("exponential") external inv: (float, float) => float = "inv"
@module("jstat") @scope("exponential") external sample: (float) => float = "sample"
@module("jstat") @scope("exponential") external mean: (float) => float = "mean"
@module("jstat") @scope("exponential") external sample: float => float = "sample"
@module("jstat") @scope("exponential") external mean: float => float = "mean"
}
module Cauchy = {
@ -56,7 +56,6 @@ module Triangular = {
@module("jstat") @scope("triangular") external mean: (float, float, float) => float = "mean"
}
module Pareto = {
@module("jstat") @scope("pareto") external pdf: (float, float, float) => float = "pdf"
@module("jstat") @scope("pareto") external cdf: (float, float, float) => float = "cdf"
@ -66,20 +65,20 @@ module Pareto = {
module Poisson = {
@module("jstat") @scope("poisson") external pdf: (float, float) => float = "pdf"
@module("jstat") @scope("poisson") external cdf: (float, float) => float = "cdf"
@module("jstat") @scope("poisson") external sample: (float) => float = "sample"
@module("jstat") @scope("poisson") external mean: (float) => float = "mean"
@module("jstat") @scope("poisson") external sample: float => float = "sample"
@module("jstat") @scope("poisson") external mean: float => float = "mean"
}
module Weibull = {
@module("jstat") @scope("weibull") external pdf: (float, float, float) => float = "pdf"
@module("jstat") @scope("weibull") external cdf: (float, float,float ) => float = "cdf"
@module("jstat") @scope("weibull") external sample: (float,float) => float = "sample"
@module("jstat") @scope("weibull") external mean: (float,float) => float = "mean"
@module("jstat") @scope("weibull") external cdf: (float, float, float) => float = "cdf"
@module("jstat") @scope("weibull") external sample: (float, float) => float = "sample"
@module("jstat") @scope("weibull") external mean: (float, float) => float = "mean"
}
module Binomial = {
@module("jstat") @scope("binomial") external pdf: (float, float, float) => float = "pdf"
@module("jstat") @scope("binomial") external cdf: (float, float,float ) => float = "cdf"
@module("jstat") @scope("binomial") external cdf: (float, float, float) => float = "cdf"
}
@module("jstat") external sum: array<float> => float = "sum"