diff --git a/packages/squiggle-lang/src/rescript/OldInterpreter/AST.res b/packages/squiggle-lang/src/rescript/OldInterpreter/AST.res new file mode 100644 index 00000000..2dca6ffc --- /dev/null +++ b/packages/squiggle-lang/src/rescript/OldInterpreter/AST.res @@ -0,0 +1,24 @@ +open ASTTypes + +let toString = ASTTypes.Node.toString + +let envs = (samplingInputs, environment) => { + samplingInputs: samplingInputs, + environment: environment, + evaluateNode: ASTEvaluator.toLeaf, +} + +let toLeaf = (samplingInputs, environment, node: node) => + ASTEvaluator.toLeaf(envs(samplingInputs, environment), node) + +let toPointSetDist = (samplingInputs, environment, node: node) => + switch toLeaf(samplingInputs, environment, node) { + | Ok(#RenderedDist(pointSetDist)) => Ok(pointSetDist) + | Ok(_) => Error("Rendering failed.") + | Error(e) => Error(e) + } + +let runFunction = (samplingInputs, environment, inputs, fn: ASTTypes.Function.t) => { + let params = envs(samplingInputs, environment) + ASTTypes.Function.run(params, inputs, fn) +} \ No newline at end of file diff --git a/packages/squiggle-lang/src/rescript/OldInterpreter/ASTEvaluator.res b/packages/squiggle-lang/src/rescript/OldInterpreter/ASTEvaluator.res new file mode 100644 index 00000000..44c5565e --- /dev/null +++ b/packages/squiggle-lang/src/rescript/OldInterpreter/ASTEvaluator.res @@ -0,0 +1,257 @@ +open ASTTypes + +type tResult = node => result + +/* Given two random variables A and B, this returns the distribution + of a new variable that is the result of the operation on A and B. + For instance, normal(0, 1) + normal(1, 1) -> normal(1, 2). + In general, this is implemented via convolution. */ +module AlgebraicCombination = { + let tryAnalyticalSimplification = (operation, t1: node, t2: node) => + switch (operation, t1, t2) { + | (operation, #SymbolicDist(d1), #SymbolicDist(d2)) => + switch SymbolicDist.T.tryAnalyticalSimplification(d1, d2, operation) { + | #AnalyticalSolution(symbolicDist) => Ok(#SymbolicDist(symbolicDist)) + | #Error(er) => Error(er) + | #NoSolution => Ok(#AlgebraicCombination(operation, t1, t2)) + } + | _ => Ok(#AlgebraicCombination(operation, t1, t2)) + } + + let combinationByRendering = (evaluationParams, algebraicOp, t1: node, t2: node): result< + node, + string, + > => + E.R.merge( + Node.ensureIsRenderedAndGetShape(evaluationParams, t1), + Node.ensureIsRenderedAndGetShape(evaluationParams, t2), + ) |> E.R.fmap(((a, b)) => #RenderedDist(PointSetDist.combineAlgebraically(algebraicOp, a, b))) + + let nodeScore: node => int = x => + switch x { + | #SymbolicDist(#Float(_)) => 1 + | #SymbolicDist(_) => 1000 + | #RenderedDist(Discrete(m)) => m.xyShape |> XYShape.T.length + | #RenderedDist(Mixed(_)) => 1000 + | #RenderedDist(Continuous(_)) => 1000 + | _ => 1000 + } + + let choose = (t1: node, t2: node) => + nodeScore(t1) * nodeScore(t2) > 10000 ? #Sampling : #Analytical + + let combine = (evaluationParams, algebraicOp, t1: node, t2: node): result => + E.R.merge( + ASTTypes.SamplingDistribution.renderIfIsNotSamplingDistribution(evaluationParams, t1), + ASTTypes.SamplingDistribution.renderIfIsNotSamplingDistribution(evaluationParams, t2), + ) |> E.R.bind(_, ((a, b)) => + switch choose(a, b) { + | #Sampling => + ASTTypes.SamplingDistribution.combineShapesUsingSampling( + evaluationParams, + algebraicOp, + a, + b, + ) + | #Analytical => combinationByRendering(evaluationParams, algebraicOp, a, b) + } + ) + + let operationToLeaf = ( + evaluationParams: evaluationParams, + algebraicOp: Operation.algebraicOperation, + t1: node, + t2: node, + ): result => + algebraicOp + |> tryAnalyticalSimplification(_, t1, t2) + |> E.R.bind(_, x => + switch x { + | #SymbolicDist(_) as t => Ok(t) + | _ => combine(evaluationParams, algebraicOp, t1, t2) + } + ) +} + +module PointwiseCombination = { + //TODO: This is crude and slow. It forces everything to be pointSetDist, even though much + //of the process could happen on symbolic distributions without a conversion to be a pointSetDist. + let pointwiseAdd = (evaluationParams: evaluationParams, t1: node, t2: node) => + switch (Node.render(evaluationParams, t1), Node.render(evaluationParams, t2)) { + | (Ok(#RenderedDist(rs1)), Ok(#RenderedDist(rs2))) => + Ok( + #RenderedDist( + PointSetDist.combinePointwise( + ~integralSumCachesFn=(a, b) => Some(a +. b), + ~integralCachesFn=(a, b) => Some( + Continuous.combinePointwise(~distributionType=#CDF, \"+.", a, b), + ), + \"+.", + rs1, + rs2, + ), + ), + ) + | (Error(e1), _) => Error(e1) + | (_, Error(e2)) => Error(e2) + | _ => Error("Pointwise combination: rendering failed.") + } + + let pointwiseCombine = (fn, evaluationParams: evaluationParams, t1: node, t2: node) => + switch // TODO: construct a function that we can easily sample from, to construct + // a RenderedDist. Use the xMin and xMax of the rendered pointSetDists to tell the sampling function where to look. + // TODO: This should work for symbolic distributions too! + (Node.render(evaluationParams, t1), Node.render(evaluationParams, t2)) { + | (Ok(#RenderedDist(rs1)), Ok(#RenderedDist(rs2))) => + Ok(#RenderedDist(PointSetDist.combinePointwise(fn, rs1, rs2))) + | (Error(e1), _) => Error(e1) + | (_, Error(e2)) => Error(e2) + | _ => Error("Pointwise combination: rendering failed.") + } + + let operationToLeaf = ( + evaluationParams: evaluationParams, + pointwiseOp: Operation.pointwiseOperation, + t1: node, + t2: node, + ) => + switch pointwiseOp { + | #Add => pointwiseAdd(evaluationParams, t1, t2) + | #Multiply => pointwiseCombine(\"*.", evaluationParams, t1, t2) + | #Exponentiate => pointwiseCombine(\"**", evaluationParams, t1, t2) + } +} + +module Truncate = { + type simplificationResult = [ + | #Solution(ASTTypes.node) + | #Error(string) + | #NoSolution + ] + + let trySimplification = (leftCutoff, rightCutoff, t): simplificationResult => + switch (leftCutoff, rightCutoff, t) { + | (None, None, t) => #Solution(t) + | (Some(lc), Some(rc), _) if lc > rc => + #Error("Left truncation bound must be smaller than right truncation bound.") + | (lc, rc, #SymbolicDist(#Uniform(u))) => + #Solution(#SymbolicDist(#Uniform(SymbolicDist.Uniform.truncate(lc, rc, u)))) + | _ => #NoSolution + } + + let truncateAsShape = (evaluationParams: evaluationParams, leftCutoff, rightCutoff, t) => + switch // TODO: use named args for xMin/xMax in renderToShape; if we're lucky we can at least get the tail + // of a distribution we otherwise wouldn't get at all + Node.ensureIsRendered(evaluationParams, t) { + | Ok(#RenderedDist(rs)) => + Ok(#RenderedDist(PointSetDist.T.truncate(leftCutoff, rightCutoff, rs))) + | Error(e) => Error(e) + | _ => Error("Could not truncate distribution.") + } + + let operationToLeaf = ( + evaluationParams, + leftCutoff: option, + rightCutoff: option, + t: node, + ): result => + t + |> trySimplification(leftCutoff, rightCutoff) + |> ( + x => + switch x { + | #Solution(t) => Ok(t) + | #Error(e) => Error(e) + | #NoSolution => truncateAsShape(evaluationParams, leftCutoff, rightCutoff, t) + } + ) +} + +module Normalize = { + let rec operationToLeaf = (evaluationParams, t: node): result => + switch t { + | #RenderedDist(s) => Ok(#RenderedDist(PointSetDist.T.normalize(s))) + | #SymbolicDist(_) => Ok(t) + | _ => ASTTypes.Node.evaluateAndRetry(evaluationParams, operationToLeaf, t) + } +} + +module FunctionCall = { + let _runHardcodedFunction = (name, evaluationParams, args) => + TypeSystem.Function.Ts.findByNameAndRun(HardcodedFunctions.all, name, evaluationParams, args) + + let _runLocalFunction = (name, evaluationParams: evaluationParams, args) => + Environment.getFunction(evaluationParams.environment, name) |> E.R.bind(_, ((argNames, fn)) => + ASTTypes.Function.run(evaluationParams, args, (argNames, fn)) + ) + + let _runWithEvaluatedInputs = ( + evaluationParams: ASTTypes.evaluationParams, + name, + args: array, + ) => + _runHardcodedFunction(name, evaluationParams, args) |> E.O.default( + _runLocalFunction(name, evaluationParams, args), + ) + + // TODO: This forces things to be floats + let run = (evaluationParams, name, args) => + args + |> E.A.fmap(a => evaluationParams.evaluateNode(evaluationParams, a)) + |> E.A.R.firstErrorOrOpen + |> E.R.bind(_, _runWithEvaluatedInputs(evaluationParams, name)) +} + +module Render = { + let rec operationToLeaf = (evaluationParams: evaluationParams, t: node): result => + switch t { + | #Function(_) => Error("Cannot render a function") + | #SymbolicDist(d) => + Ok( + #RenderedDist( + SymbolicDist.T.toPointSetDist(evaluationParams.samplingInputs.pointSetDistLength, d), + ), + ) + | #RenderedDist(_) as t => Ok(t) // already a rendered pointSetDist, we're done here + | _ => ASTTypes.Node.evaluateAndRetry(evaluationParams, operationToLeaf, t) + } +} + +/* This function recursively goes through the nodes of the parse tree, + replacing each Operation node and its subtree with a Data node. + Whenever possible, the replacement produces a new Symbolic Data node, + but most often it will produce a RenderedDist. + This function is used mainly to turn a parse tree into a single RenderedDist + that can then be displayed to the user. */ +let rec toLeaf = (evaluationParams: ASTTypes.evaluationParams, node: node): result => + switch node { + // Leaf nodes just stay leaf nodes + | #SymbolicDist(_) + | #Function(_) + | #RenderedDist(_) => + Ok(node) + | #Array(args) => + args |> E.A.fmap(toLeaf(evaluationParams)) |> E.A.R.firstErrorOrOpen |> E.R.fmap(r => #Array(r)) + // Operations nevaluationParamsd to be turned into leaves + | #AlgebraicCombination(algebraicOp, t1, t2) => + AlgebraicCombination.operationToLeaf(evaluationParams, algebraicOp, t1, t2) + | #PointwiseCombination(pointwiseOp, t1, t2) => + PointwiseCombination.operationToLeaf(evaluationParams, pointwiseOp, t1, t2) + | #Truncate(leftCutoff, rightCutoff, t) => + Truncate.operationToLeaf(evaluationParams, leftCutoff, rightCutoff, t) + | #Normalize(t) => Normalize.operationToLeaf(evaluationParams, t) + | #Render(t) => Render.operationToLeaf(evaluationParams, t) + | #Hash(t) => + t + |> E.A.fmap(((name: string, node: node)) => + toLeaf(evaluationParams, node) |> E.R.fmap(r => (name, r)) + ) + |> E.A.R.firstErrorOrOpen + |> E.R.fmap(r => #Hash(r)) + | #Symbol(r) => + ASTTypes.Environment.get(evaluationParams.environment, r) + |> E.O.toResult("Undeclared variable " ++ r) + |> E.R.bind(_, toLeaf(evaluationParams)) + | #FunctionCall(name, args) => + FunctionCall.run(evaluationParams, name, args) |> E.R.bind(_, toLeaf(evaluationParams)) + } diff --git a/packages/squiggle-lang/src/rescript/OldInterpreter/ASTTypes.res b/packages/squiggle-lang/src/rescript/OldInterpreter/ASTTypes.res new file mode 100644 index 00000000..31217374 --- /dev/null +++ b/packages/squiggle-lang/src/rescript/OldInterpreter/ASTTypes.res @@ -0,0 +1,233 @@ +@genType +type rec hash = array<(string, node)> +and node = [ + | #SymbolicDist(SymbolicDistTypes.symbolicDist) + | #RenderedDist(PointSetTypes.pointSetDist) + | #Symbol(string) + | #Hash(hash) + | #Array(array) + | #Function(array, node) + | #AlgebraicCombination(Operation.algebraicOperation, node, node) + | #PointwiseCombination(Operation.pointwiseOperation, node, node) + | #Normalize(node) + | #Render(node) + | #Truncate(option, option, node) + | #FunctionCall(string, array) +] + +type statement = [ + | #Assignment(string, node) + | #Expression(node) +] +type program = array + +type environment = Belt.Map.String.t + +type rec evaluationParams = { + samplingInputs: SamplingInputs.samplingInputs, + environment: environment, + evaluateNode: (evaluationParams, node) => Belt.Result.t, +} + +module Environment = { + type t = environment + module MS = Belt.Map.String + let fromArray = MS.fromArray + let empty: t = []->fromArray + let mergeKeepSecond = (a: t, b: t) => + MS.merge(a, b, (_, a, b) => + switch (a, b) { + | (_, Some(b)) => Some(b) + | (Some(a), _) => Some(a) + | _ => None + } + ) + let update = (t, str, fn) => MS.update(t, str, fn) + let get = (t: t, str) => MS.get(t, str) + let getFunction = (t: t, str) => + switch get(t, str) { + | Some(#Function(argNames, fn)) => Ok((argNames, fn)) + | _ => Error("Function " ++ (str ++ " not found")) + } +} + +module Node = { + let getFloat = (node: node) => + node |> ( + x => + switch x { + | #RenderedDist(Discrete({xyShape: {xs: [x], ys: [1.0]}})) => Some(x) + | #SymbolicDist(#Float(x)) => Some(x) + | _ => None + } + ) + + let evaluate = (evaluationParams: evaluationParams) => + evaluationParams.evaluateNode(evaluationParams) + + let evaluateAndRetry = (evaluationParams, fn, node) => + node |> evaluationParams.evaluateNode(evaluationParams) |> E.R.bind(_, fn(evaluationParams)) + + let rec toString: node => string = x => + switch x { + | #SymbolicDist(d) => SymbolicDist.T.toString(d) + | #RenderedDist(_) => "[renderedShape]" + | #AlgebraicCombination(op, t1, t2) => + Operation.Algebraic.format(op, toString(t1), toString(t2)) + | #PointwiseCombination(op, t1, t2) => + Operation.Pointwise.format(op, toString(t1), toString(t2)) + | #Normalize(t) => "normalize(k" ++ (toString(t) ++ ")") + | #Truncate(lc, rc, t) => Operation.Truncate.toString(lc, rc, toString(t)) + | #Render(t) => toString(t) + | #Symbol(t) => "Symbol: " ++ t + | #FunctionCall(name, args) => + "[Function call: (" ++ + (name ++ + ((args |> E.A.fmap(toString) |> Js.String.concatMany(_, ",")) ++ ")]")) + | #Function(args, internal) => + "[Function: (" ++ ((args |> Js.String.concatMany(_, ",")) ++ (toString(internal) ++ ")]")) + | #Array(a) => "[" ++ ((a |> E.A.fmap(toString) |> Js.String.concatMany(_, ",")) ++ "]") + | #Hash(h) => + "{" ++ + ((h + |> E.A.fmap(((name, value)) => name ++ (":" ++ toString(value))) + |> Js.String.concatMany(_, ",")) ++ + "}") + } + + let render = (evaluationParams: evaluationParams, r) => #Render(r) |> evaluate(evaluationParams) + + let ensureIsRendered = (params, t) => + switch t { + | #RenderedDist(_) => Ok(t) + | _ => + switch render(params, t) { + | Ok(#RenderedDist(r)) => Ok(#RenderedDist(r)) + | Ok(_) => Error("Did not render as requested") + | Error(e) => Error(e) + } + } + + let ensureIsRenderedAndGetShape = (params, t) => + switch ensureIsRendered(params, t) { + | Ok(#RenderedDist(r)) => Ok(r) + | Ok(_) => Error("Did not render as requested") + | Error(e) => Error(e) + } + + let toPointSetDist = (item: node) => + switch item { + | #RenderedDist(r) => Some(r) + | _ => None + } + + let _toFloat = (t: PointSetTypes.pointSetDist) => + switch t { + | Discrete({xyShape: {xs: [x], ys: [1.0]}}) => Some(#SymbolicDist(#Float(x))) + | _ => None + } + + let toFloat = (item: node): result => + item |> toPointSetDist |> E.O.bind(_, _toFloat) |> E.O.toResult("Not valid shape") +} + +module Function = { + type t = (array, node) + let fromNode: node => option = node => + switch node { + | #Function(r) => Some(r) + | _ => None + } + let argumentNames = ((a, _): t) => a + let internals = ((_, b): t) => b + let run = (evaluationParams: evaluationParams, args: array, t: t) => + if E.A.length(args) == E.A.length(argumentNames(t)) { + let newEnvironment = Belt.Array.zip(argumentNames(t), args) |> Environment.fromArray + let newEvaluationParams: evaluationParams = { + samplingInputs: evaluationParams.samplingInputs, + environment: Environment.mergeKeepSecond(evaluationParams.environment, newEnvironment), + evaluateNode: evaluationParams.evaluateNode, + } + evaluationParams.evaluateNode(newEvaluationParams, internals(t)) + } else { + Error("Wrong number of variables") + } +} + +module SamplingDistribution = { + type t = [ + | #SymbolicDist(SymbolicDistTypes.symbolicDist) + | #RenderedDist(PointSetTypes.pointSetDist) + ] + + let isSamplingDistribution: node => bool = x => + switch x { + | #SymbolicDist(_) => true + | #RenderedDist(_) => true + | _ => false + } + + let fromNode: node => result = x => + switch x { + | #SymbolicDist(n) => Ok(#SymbolicDist(n)) + | #RenderedDist(n) => Ok(#RenderedDist(n)) + | _ => Error("Not valid type") + } + + let renderIfIsNotSamplingDistribution = (params, t): result => + !isSamplingDistribution(t) + ? switch Node.render(params, t) { + | Ok(r) => Ok(r) + | Error(e) => Error(e) + } + : Ok(t) + + let map = (~renderedDistFn, ~symbolicDistFn, node: node) => + node |> ( + x => + switch x { + | #RenderedDist(r) => Some(renderedDistFn(r)) + | #SymbolicDist(s) => Some(symbolicDistFn(s)) + | _ => None + } + ) + + let sampleN = n => + map(~renderedDistFn=PointSetDist.sampleNRendered(n), ~symbolicDistFn=SymbolicDist.T.sampleN(n)) + + let getCombinationSamples = (n, algebraicOp, t1: node, t2: node) => + switch (sampleN(n, t1), sampleN(n, t2)) { + | (Some(a), Some(b)) => + Some( + Belt.Array.zip(a, b) |> E.A.fmap(((a, b)) => Operation.Algebraic.toFn(algebraicOp, a, b)), + ) + | _ => None + } + + let combineShapesUsingSampling = ( + evaluationParams: evaluationParams, + algebraicOp, + t1: node, + t2: node, + ) => { + let i1 = renderIfIsNotSamplingDistribution(evaluationParams, t1) + let i2 = renderIfIsNotSamplingDistribution(evaluationParams, t2) + E.R.merge(i1, i2) |> E.R.bind(_, ((a, b)) => { + let samples = getCombinationSamples( + evaluationParams.samplingInputs.sampleCount, + algebraicOp, + a, + b, + ) + + let pointSetDist = + samples + |> E.O.fmap(r => + SampleSet.toPointSetDist(~samplingInputs=evaluationParams.samplingInputs, ~samples=r, ()) + ) + |> E.O.bind(_, r => r.pointSetDist) + |> E.O.toResult("No response") + pointSetDist |> E.R.fmap(r => #Normalize(#RenderedDist(r))) + }) + } +} diff --git a/packages/squiggle-lang/src/rescript/OldInterpreter/DistPlus.res b/packages/squiggle-lang/src/rescript/OldInterpreter/DistPlus.res new file mode 100644 index 00000000..2b1688b0 --- /dev/null +++ b/packages/squiggle-lang/src/rescript/OldInterpreter/DistPlus.res @@ -0,0 +1,116 @@ +open PointSetTypes; + +@genType +type t = PointSetTypes.distPlus; + +let pointSetDistIntegral = pointSetDist => PointSetDist.T.Integral.get(pointSetDist); +let make = + ( + ~pointSetDist, + ~squiggleString, + (), + ) + : t => { + let integral = pointSetDistIntegral(pointSetDist); + {pointSetDist, integralCache: integral, squiggleString}; +}; + +let update = + ( + ~pointSetDist=?, + ~integralCache=?, + ~squiggleString=?, + t: t, + ) => { + pointSetDist: E.O.default(t.pointSetDist, pointSetDist), + integralCache: E.O.default(t.integralCache, integralCache), + squiggleString: E.O.default(t.squiggleString, squiggleString), +}; + +let updateShape = (pointSetDist, t) => { + let integralCache = pointSetDistIntegral(pointSetDist); + update(~pointSetDist, ~integralCache, t); +}; + +let toPointSetDist = ({pointSetDist, _}: t) => pointSetDist; + +let pointSetDistFn = (fn, {pointSetDist}: t) => fn(pointSetDist); + +module T = + Distributions.Dist({ + type t = PointSetTypes.distPlus; + type integral = PointSetTypes.distPlus; + let toPointSetDist = toPointSetDist; + let toContinuous = pointSetDistFn(PointSetDist.T.toContinuous); + let toDiscrete = pointSetDistFn(PointSetDist.T.toDiscrete); + + let normalize = (t: t): t => { + let normalizedShape = t |> toPointSetDist |> PointSetDist.T.normalize; + t |> updateShape(normalizedShape); + }; + + let truncate = (leftCutoff, rightCutoff, t: t): t => { + let truncatedShape = + t + |> toPointSetDist + |> PointSetDist.T.truncate(leftCutoff, rightCutoff); + + t |> updateShape(truncatedShape); + }; + + let xToY = (f, t: t) => + t + |> toPointSetDist + |> PointSetDist.T.xToY(f); + + let minX = pointSetDistFn(PointSetDist.T.minX); + let maxX = pointSetDistFn(PointSetDist.T.maxX); + let toDiscreteProbabilityMassFraction = + pointSetDistFn(PointSetDist.T.toDiscreteProbabilityMassFraction); + + // This bit is kind of awkward, could probably use rethinking. + let integral = (t: t) => + updateShape(Continuous(t.integralCache), t); + + let updateIntegralCache = (integralCache: option, t) => + update(~integralCache=E.O.default(t.integralCache, integralCache), t); + + let downsample = (i, t): t => + updateShape(t |> toPointSetDist |> PointSetDist.T.downsample(i), t); + // todo: adjust for limit, maybe? + let mapY = + ( + ~integralSumCacheFn=previousIntegralSum => None, + ~integralCacheFn=previousIntegralCache => None, + ~fn, + {pointSetDist, _} as t: t, + ) + : t => + PointSetDist.T.mapY(~integralSumCacheFn, ~fn, pointSetDist) + |> updateShape(_, t); + + // get the total of everything + let integralEndY = (t: t) => { + PointSetDist.T.Integral.sum( + toPointSetDist(t), + ); + }; + + // TODO: Fix this below, obviously. Adjust for limits + let integralXtoY = (f, t: t) => { + PointSetDist.T.Integral.xToY( + f, + toPointSetDist(t), + ) + }; + + // TODO: This part is broken when there is a limit, if this is supposed to be taken into account. + let integralYtoX = (f, t: t) => { + PointSetDist.T.Integral.yToX(f, toPointSetDist(t)); + }; + + let mean = (t: t) => { + PointSetDist.T.mean(t.pointSetDist); + }; + let variance = (t: t) => PointSetDist.T.variance(t.pointSetDist); + }); diff --git a/packages/squiggle-lang/src/rescript/OldInterpreter/typeSystem/HardcodedFunctions.res b/packages/squiggle-lang/src/rescript/OldInterpreter/typeSystem/HardcodedFunctions.res new file mode 100644 index 00000000..cf8fe470 --- /dev/null +++ b/packages/squiggle-lang/src/rescript/OldInterpreter/typeSystem/HardcodedFunctions.res @@ -0,0 +1,234 @@ +open TypeSystem + +let wrongInputsError = (r: array) => { + let inputs = r |> E.A.fmap(TypedValue.toString) |> Js.String.concatMany(_, ",") + Js.log3("Inputs were", inputs, r) + Error("Wrong inputs. The inputs were:" ++ inputs) +} + +let to_: (float, float) => result = (low, high) => + switch (low, high) { + | (low, high) if low <= 0.0 && low < high => + Ok(#SymbolicDist(SymbolicDist.Normal.from90PercentCI(low, high))) + | (low, high) if low < high => + Ok(#SymbolicDist(SymbolicDist.Lognormal.from90PercentCI(low, high))) + | (_, _) => Error("Low value must be less than high value.") + } + +let makeSymbolicFromTwoFloats = (name, fn) => + Function.T.make( + ~name, + ~outputType=#SamplingDistribution, + ~inputTypes=[#Float, #Float], + ~run=x => + switch x { + | [#Float(a), #Float(b)] => fn(a, b) |> E.R.fmap(r => (#SymbolicDist(r))) + | e => wrongInputsError(e) + }, + (), + ) + +let makeSymbolicFromOneFloat = (name, fn) => + Function.T.make( + ~name, + ~outputType=#SamplingDistribution, + ~inputTypes=[#Float], + ~run=x => + switch x { + | [#Float(a)] => fn(a) |> E.R.fmap(r => #SymbolicDist(r)) + | e => wrongInputsError(e) + }, + (), + ) + +let makeDistFloat = (name, fn) => + Function.T.make( + ~name, + ~outputType=#SamplingDistribution, + ~inputTypes=[#SamplingDistribution, #Float], + ~run=x => + switch x { + | [#SamplingDist(a), #Float(b)] => fn(a, b) + | [#RenderedDist(a), #Float(b)] => fn(#RenderedDist(a), b) + | e => wrongInputsError(e) + }, + (), + ) + +let makeRenderedDistFloat = (name, fn) => + Function.T.make( + ~name, + ~outputType=#RenderedDistribution, + ~inputTypes=[#RenderedDistribution, #Float], + ~shouldCoerceTypes=true, + ~run=x => + switch x { + | [#RenderedDist(a), #Float(b)] => fn(a, b) + | e => wrongInputsError(e) + }, + (), + ) + +let makeDist = (name, fn) => + Function.T.make( + ~name, + ~outputType=#SamplingDistribution, + ~inputTypes=[#SamplingDistribution], + ~run=x => + switch x { + | [#SamplingDist(a)] => fn(a) + | [#RenderedDist(a)] => fn(#RenderedDist(a)) + | e => wrongInputsError(e) + }, + (), + ) + +let floatFromDist = ( + distToFloatOp: Operation.distToFloatOperation, + t: TypeSystem.samplingDist, +): result => + switch t { + | #SymbolicDist(s) => + SymbolicDist.T.operate(distToFloatOp, s) |> E.R.bind(_, v => Ok(#SymbolicDist(#Float(v)))) + | #RenderedDist(rs) => PointSetDist.operate(distToFloatOp, rs) |> (v => Ok(#SymbolicDist(#Float(v)))) + } + +let verticalScaling = (scaleOp, rs, scaleBy) => { + // scaleBy has to be a single float, otherwise we'll return an error. + let fn = (secondary, main) => Operation.Scale.toFn(scaleOp, main, secondary) + let integralSumCacheFn = Operation.Scale.toIntegralSumCacheFn(scaleOp) + let integralCacheFn = Operation.Scale.toIntegralCacheFn(scaleOp) + Ok( + #RenderedDist( + PointSetDist.T.mapY( + ~integralSumCacheFn=integralSumCacheFn(scaleBy), + ~integralCacheFn=integralCacheFn(scaleBy), + ~fn=fn(scaleBy), + rs, + ), + ), + ) +} + +module Multimodal = { + let getByNameResult = Hash.getByNameResult + + let _paramsToDistsAndWeights = (r: array) => + switch r { + | [#Hash(r)] => + let dists = + getByNameResult(r, "dists") + ->E.R.bind(TypeSystem.TypedValue.toArray) + ->E.R.bind(r => r |> E.A.fmap(TypeSystem.TypedValue.toDist) |> E.A.R.firstErrorOrOpen) + let weights = + getByNameResult(r, "weights") + ->E.R.bind(TypeSystem.TypedValue.toArray) + ->E.R.bind(r => r |> E.A.fmap(TypeSystem.TypedValue.toFloat) |> E.A.R.firstErrorOrOpen) + + E.R.merge(dists, weights) -> E.R.bind(((a, b)) => + E.A.length(b) > E.A.length(a) ? + Error("Too many weights provided") : + Ok(E.A.zipMaxLength(a, b) |> E.A.fmap(((a, b)) => (a |> E.O.toExn(""), b |> E.O.default(1.0)))) + ) + | _ => Error("Needs items") + } + let _runner: array => result = r => { + let paramsToDistsAndWeights = + _paramsToDistsAndWeights(r) |> E.R.fmap( + E.A.fmap(((dist, weight)) => + #FunctionCall("scaleMultiply", [dist, #SymbolicDist(#Float(weight))]) + ), + ) + let pointwiseSum: result = + paramsToDistsAndWeights->E.R.bind(E.R.errorIfCondition(E.A.isEmpty, "Needs one input")) + |> E.R.fmap(r => + r + |> Js.Array.sliceFrom(1) + |> E.A.fold_left((acc, x) => #PointwiseCombination(#Add, acc, x), E.A.unsafe_get(r, 0)) + ) + pointwiseSum + } + + let _function = Function.T.make( + ~name="multimodal", + ~outputType=#SamplingDistribution, + ~inputTypes=[#Hash([("dists", #Array(#SamplingDistribution)), ("weights", #Array(#Float))])], + ~run=_runner, + (), + ) +} + +let all = [ + makeSymbolicFromTwoFloats("normal", SymbolicDist.Normal.make), + makeSymbolicFromTwoFloats("uniform", SymbolicDist.Uniform.make), + makeSymbolicFromTwoFloats("beta", SymbolicDist.Beta.make), + makeSymbolicFromTwoFloats("lognormal", SymbolicDist.Lognormal.make), + makeSymbolicFromTwoFloats("lognormalFromMeanAndStdDev", SymbolicDist.Lognormal.fromMeanAndStdev), + makeSymbolicFromOneFloat("exponential", SymbolicDist.Exponential.make), + Function.T.make( + ~name="to", + ~outputType=#SamplingDistribution, + ~inputTypes=[#Float, #Float], + ~run=x => + switch x { + | [#Float(a), #Float(b)] => to_(a, b) + | e => wrongInputsError(e) + }, + (), + ), + Function.T.make( + ~name="triangular", + ~outputType=#SamplingDistribution, + ~inputTypes=[#Float, #Float, #Float], + ~run=x => + switch x { + | [#Float(a), #Float(b), #Float(c)] => + SymbolicDist.Triangular.make(a, b, c) |> E.R.fmap(r => #SymbolicDist(r)) + | e => wrongInputsError(e) + }, + (), + ), + Function.T.make( + ~name="log", + ~outputType=#Float, + ~inputTypes=[#Float], + ~run=x => + switch x { + | [#Float(a)] => Ok(#SymbolicDist(#Float(Js.Math.log(a)))) + | e => wrongInputsError(e) + }, + (), + ), + makeDistFloat("pdf", (dist, float) => floatFromDist(#Pdf(float), dist)), + makeDistFloat("inv", (dist, float) => floatFromDist(#Inv(float), dist)), + makeDistFloat("cdf", (dist, float) => floatFromDist(#Cdf(float), dist)), + makeDist("mean", dist => floatFromDist(#Mean, dist)), + makeDist("sample", dist => floatFromDist(#Sample, dist)), + Function.T.make( + ~name="render", + ~outputType=#RenderedDistribution, + ~inputTypes=[#RenderedDistribution], + ~run=x => + switch x { + | [#RenderedDist(c)] => Ok(#RenderedDist(c)) + | e => wrongInputsError(e) + }, + (), + ), + Function.T.make( + ~name="normalize", + ~outputType=#SamplingDistribution, + ~inputTypes=[#SamplingDistribution], + ~run=x => + switch x { + | [#SamplingDist(#SymbolicDist(c))] => Ok(#SymbolicDist(c)) + | [#SamplingDist(#RenderedDist(c))] => Ok(#RenderedDist(PointSetDist.T.normalize(c))) + | e => wrongInputsError(e) + }, + (), + ), + makeRenderedDistFloat("scaleExp", (dist, float) => verticalScaling(#Exponentiate, dist, float)), + makeRenderedDistFloat("scaleMultiply", (dist, float) => verticalScaling(#Multiply, dist, float)), + makeRenderedDistFloat("scaleLog", (dist, float) => verticalScaling(#Logarithm, dist, float)), + Multimodal._function, +] diff --git a/packages/squiggle-lang/src/rescript/OldInterpreter/typeSystem/TypeSystem.res b/packages/squiggle-lang/src/rescript/OldInterpreter/typeSystem/TypeSystem.res new file mode 100644 index 00000000..51332106 --- /dev/null +++ b/packages/squiggle-lang/src/rescript/OldInterpreter/typeSystem/TypeSystem.res @@ -0,0 +1,204 @@ +type node = ASTTypes.node +let getFloat = ASTTypes.Node.getFloat + +type samplingDist = [ + | #SymbolicDist(SymbolicDistTypes.symbolicDist) + | #RenderedDist(PointSetTypes.pointSetDist) +] + +type rec hashType = array<(string, _type)> +and _type = [ + | #Float + | #SamplingDistribution + | #RenderedDistribution + | #Array(_type) + | #Hash(hashType) +] + +type rec hashTypedValue = array<(string, typedValue)> +and typedValue = [ + | #Float(float) + | #RenderedDist(PointSetTypes.pointSetDist) + | #SamplingDist(samplingDist) + | #Array(array) + | #Hash(hashTypedValue) +] + +type _function = { + name: string, + inputTypes: array<_type>, + outputType: _type, + run: array => result, + shouldCoerceTypes: bool, +} + +type functions = array<_function> +type inputNodes = array + +module TypedValue = { + let rec toString: typedValue => string = x => + switch x { + | #SamplingDist(_) => "[sampling dist]" + | #RenderedDist(_) => "[rendered PointSetDist]" + | #Float(f) => "Float: " ++ Js.Float.toString(f) + | #Array(a) => "[" ++ ((a |> E.A.fmap(toString) |> Js.String.concatMany(_, ",")) ++ "]") + | #Hash(v) => + "{" ++ + ((v + |> E.A.fmap(((name, value)) => name ++ (":" ++ toString(value))) + |> Js.String.concatMany(_, ",")) ++ + "}") + } + + let rec fromNode = (node: node): result => + switch node { + | #SymbolicDist(#Float(r)) => Ok(#Float(r)) + | #SymbolicDist(s) => Ok(#SamplingDist(#SymbolicDist(s))) + | #RenderedDist(s) => Ok(#RenderedDist(s)) + | #Array(r) => r |> E.A.fmap(fromNode) |> E.A.R.firstErrorOrOpen |> E.R.fmap(r => #Array(r)) + | #Hash(hash) => + hash + |> E.A.fmap(((name, t)) => fromNode(t) |> E.R.fmap(r => (name, r))) + |> E.A.R.firstErrorOrOpen + |> E.R.fmap(r => #Hash(r)) + | e => Error("Wrong type: " ++ ASTTypes.Node.toString(e)) + } + + // todo: Arrays and hashes + let rec fromNodeWithTypeCoercion = (evaluationParams, _type: _type, node) => + switch (_type, node) { + | (#Float, _) => + switch getFloat(node) { + | Some(a) => Ok(#Float(a)) + | _ => Error("Type Error: Expected float.") + } + | (#SamplingDistribution, _) => + ASTTypes.SamplingDistribution.renderIfIsNotSamplingDistribution( + evaluationParams, + node, + ) |> E.R.bind(_, fromNode) + | (#RenderedDistribution, _) => + ASTTypes.Node.render(evaluationParams, node) |> E.R.bind(_, fromNode) + | (#Array(_type), #Array(b)) => + b + |> E.A.fmap(fromNodeWithTypeCoercion(evaluationParams, _type)) + |> E.A.R.firstErrorOrOpen + |> E.R.fmap(r => #Array(r)) + | (#Hash(named), #Hash(r)) => + let keyValues = + named |> E.A.fmap(((name, intendedType)) => ( + name, + intendedType, + Hash.getByName(r, name), + )) + let typedHash = + keyValues + |> E.A.fmap(((name, intendedType, optionNode)) => + switch optionNode { + | Some(node) => + fromNodeWithTypeCoercion(evaluationParams, intendedType, node) |> E.R.fmap(node => ( + name, + node, + )) + | None => Error("Hash parameter not present in hash.") + } + ) + |> E.A.R.firstErrorOrOpen + |> E.R.fmap(r => #Hash(r)) + typedHash + | _ => Error("fromNodeWithTypeCoercion error, sorry.") + } + + let toFloat: typedValue => result = x => + switch x { + | #Float(x) => Ok(x) + | _ => Error("Not a float") + } + + let toArray: typedValue => result, string> = x => + switch x { + | #Array(x) => Ok(x) + | _ => Error("Not an array") + } + + let toNamed: typedValue => result = x => + switch x { + | #Hash(x) => Ok(x) + | _ => Error("Not a named item") + } + + let toDist: typedValue => result = x => + switch x { + | #SamplingDist(#SymbolicDist(c)) => Ok(#SymbolicDist(c)) + | #SamplingDist(#RenderedDist(c)) => Ok(#RenderedDist(c)) + | #RenderedDist(c) => Ok(#RenderedDist(c)) + | #Float(x) => Ok(#SymbolicDist(#Float(x))) + | x => Error("Cannot be converted into a distribution: " ++ toString(x)) + } +} + +module Function = { + type t = _function + type ts = functions + + module T = { + let make = (~name, ~inputTypes, ~outputType, ~run, ~shouldCoerceTypes=true, _): t => { + name: name, + inputTypes: inputTypes, + outputType: outputType, + run: run, + shouldCoerceTypes: shouldCoerceTypes, + } + + let _inputLengthCheck = (inputNodes: inputNodes, t: t) => { + let expectedLength = E.A.length(t.inputTypes) + let actualLength = E.A.length(inputNodes) + expectedLength == actualLength + ? Ok(inputNodes) + : Error( + "Wrong number of inputs. Expected" ++ + ((expectedLength |> E.I.toString) ++ + (". Got:" ++ (actualLength |> E.I.toString))), + ) + } + + let _coerceInputNodes = (evaluationParams, inputTypes, shouldCoerce, inputNodes) => + Belt.Array.zip(inputTypes, inputNodes) + |> E.A.fmap(((def, input)) => + shouldCoerce + ? TypedValue.fromNodeWithTypeCoercion(evaluationParams, def, input) + : TypedValue.fromNode(input) + ) + |> E.A.R.firstErrorOrOpen + + let inputsToTypedValues = ( + evaluationParams: ASTTypes.evaluationParams, + inputNodes: inputNodes, + t: t, + ) => + _inputLengthCheck(inputNodes, t)->E.R.bind( + _coerceInputNodes(evaluationParams, t.inputTypes, t.shouldCoerceTypes), + ) + + let run = ( + evaluationParams: ASTTypes.evaluationParams, + inputNodes: inputNodes, + t: t, + ) => + inputsToTypedValues(evaluationParams, inputNodes, t)->E.R.bind(t.run) + |> ( + x => + switch x { + | Ok(i) => Ok(i) + | Error(r) => Error("Function " ++ (t.name ++ (" error: " ++ r))) + } + ) + } + + module Ts = { + let findByName = (ts: ts, n: string) => ts |> Belt.Array.getBy(_, ({name}) => name == n) + + let findByNameAndRun = (ts: ts, n: string, evaluationParams, inputTypes) => + findByName(ts, n) |> E.O.fmap(T.run(evaluationParams, inputTypes)) + } +}