Cleanup and commenting for PR

This commit is contained in:
Ozzie Gooen 2022-04-08 22:55:06 -04:00
parent 2dc57bedc5
commit 54b6b18d3a
9 changed files with 105 additions and 145 deletions

View File

@ -9,12 +9,12 @@ export type { SamplingInputs, exportEnv, exportDistribution };
export type { t as DistPlus } from "../rescript/OldInterpreter/DistPlus.gen";
import {
genericDist,
env,
resultDist,
resultFloat,
resultString,
} from "../rescript/TSInterface.gen";
} from "../rescript/TypescriptInterface.gen";
import {
env,
Constructors_mean,
Constructors_sample,
Constructors_pdf,
@ -59,8 +59,9 @@ export function run(
return runAll(squiggleString, si, env);
}
export function resultMap(
r:
//This is clearly not fully typed. I think later we should use a functional library to
// provide a better Either type and corresponding functions.
type result =
| {
tag: "Ok";
value: any;
@ -68,17 +69,9 @@ export function resultMap(
| {
tag: "Error";
value: any;
},
mapFn: any
):
| {
tag: "Ok";
value: any;
}
| {
tag: "Error";
value: any;
} {
};
export function resultMap(r: result, mapFn: any): result {
if (r.tag === "Ok") {
return { tag: "Ok", value: mapFn(r.value) };
} else {

View File

@ -114,8 +114,8 @@ let rec run = (~env, functionCallInfo: functionCallInfo): outputType => {
->E.R2.fmap(r => Float(r))
->OutputLocal.fromResult
| ToString(ToString) => dist->GenericDist.toString->String
| ToString(ToSparkline(buckets)) =>
GenericDist.toSparkline(dist, ~sampleCount, ~buckets, ())
| ToString(ToSparkline(bucketCount)) =>
GenericDist.toSparkline(dist, ~sampleCount, ~bucketCount, ())
->E.R2.fmap(r => String(r))
->OutputLocal.fromResult
| ToDist(Inspect) => {
@ -186,8 +186,11 @@ module Output = {
}
}
// See comment above GenericDist_Types.Constructors to explain the purpose of this module.
// I tried having another internal module called UsingDists, similar to how its done in
// GenericDist_Types.Constructors. However, this broke GenType for me, so beware.
module Constructors = {
module C = GenericDist_Types.Constructors.UsingDists;
module C = GenericDist_Types.Constructors.UsingDists
open OutputLocal
let mean = (~env, dist) => C.mean(dist)->run(~env)->toFloatR
let sample = (~env, dist) => C.sample(dist)->run(~env)->toFloatR
@ -201,12 +204,11 @@ module Constructors = {
C.truncate(dist, leftCutoff, rightCutoff)->run(~env)->toDistR
let inspect = (~env, dist) => C.inspect(dist)->run(~env)->toDistR
let toString = (~env, dist) => C.toString(dist)->run(~env)->toStringR
let toSparkline = (~env, dist, buckets) => C.toSparkline(dist, buckets)->run(~env)->toStringR
let toSparkline = (~env, dist, bucketCount) => C.toSparkline(dist, bucketCount)->run(~env)->toStringR
let algebraicAdd = (~env, dist1, dist2) => C.algebraicAdd(dist1, dist2)->run(~env)->toDistR
let algebraicMultiply = (~env, dist1, dist2) =>
C.algebraicMultiply(dist1, dist2)->run(~env)->toDistR
let algebraicDivide = (~env, dist1, dist2) =>
C.algebraicDivide(dist1, dist2)->run(~env)->toDistR
let algebraicDivide = (~env, dist1, dist2) => C.algebraicDivide(dist1, dist2)->run(~env)->toDistR
let algebraicSubtract = (~env, dist1, dist2) =>
C.algebraicSubtract(dist1, dist2)->run(~env)->toDistR
let algebraicLogarithm = (~env, dist1, dist2) =>
@ -216,8 +218,7 @@ module Constructors = {
let pointwiseAdd = (~env, dist1, dist2) => C.pointwiseAdd(dist1, dist2)->run(~env)->toDistR
let pointwiseMultiply = (~env, dist1, dist2) =>
C.pointwiseMultiply(dist1, dist2)->run(~env)->toDistR
let pointwiseDivide = (~env, dist1, dist2) =>
C.pointwiseDivide(dist1, dist2)->run(~env)->toDistR
let pointwiseDivide = (~env, dist1, dist2) => C.pointwiseDivide(dist1, dist2)->run(~env)->toDistR
let pointwiseSubtract = (~env, dist1, dist2) =>
C.pointwiseSubtract(dist1, dist2)->run(~env)->toDistR
let pointwiseLogarithm = (~env, dist1, dist2) =>

View File

@ -81,11 +81,17 @@ let toPointSet = (
}
}
let toSparkline = (t: t, ~sampleCount: int, ~buckets: int=20, unit): result<string, error> =>
/*
PointSetDist.toSparkline calls "downsampleEquallyOverX", which downsamples it to n=bucketCount.
It first needs a pointSetDist, so we convert to a pointSetDist. In this process we want the
xyPointLength to be a bit longer than the eventual toSparkline downsampling. I chose 3
fairly arbitrarily.
*/
let toSparkline = (t: t, ~sampleCount: int, ~bucketCount: int=20, unit): result<string, error> =>
t
->toPointSet(~xSelection=#Linear, ~xyPointLength=buckets * 3, ~sampleCount, ())
->toPointSet(~xSelection=#Linear, ~xyPointLength=bucketCount * 3, ~sampleCount, ())
->E.R.bind(r =>
r->PointSetDist.toSparkline(buckets)->E.R2.errMap(r => Error(GenericDist_Types.Other(r)))
r->PointSetDist.toSparkline(bucketCount)->E.R2.errMap(r => Error(GenericDist_Types.Other(r)))
)
module Truncate = {

View File

@ -26,7 +26,7 @@ let toPointSet: (
~xSelection: GenericDist_Types.Operation.pointsetXSelection=?,
unit,
) => result<PointSetTypes.pointSetDist, error>
let toSparkline: (t, ~sampleCount: int, ~buckets: int=?, unit) => result<string, error>
let toSparkline: (t, ~sampleCount: int, ~bucketCount: int=?, unit) => result<string, error>
let truncate: (
t,

View File

@ -98,6 +98,14 @@ module Operation = {
}
}
/*
It can be a pain to write out the genericFunctionCallInfo. The constructors help with this.
This code only covers some of genericFunctionCallInfo: many arguments could be called with either a
float or a distribution. The "UsingDists" module assumes that everything is a distribution.
This is a tradeoff of some generality in order to get a bit more simplicity.
I could see having a longer interface in the future, but it could be messy.
Like, algebraicAddDistFloat vs. algebraicAddDistDist
*/
module Constructors = {
type t = Operation.genericFunctionCallInfo
@ -105,9 +113,9 @@ module Constructors = {
@genType
let mean = (dist): t => FromDist(ToFloat(#Mean), dist)
let sample = (dist): t => FromDist(ToFloat(#Sample), dist)
let cdf = (dist, f): t => FromDist(ToFloat(#Cdf(f)), dist)
let inv = (dist, f): t => FromDist(ToFloat(#Inv(f)), dist)
let pdf = (dist, f): t => FromDist(ToFloat(#Pdf(f)), dist)
let cdf = (dist, x): t => FromDist(ToFloat(#Cdf(x)), dist)
let inv = (dist, x): t => FromDist(ToFloat(#Inv(x)), dist)
let pdf = (dist, x): t => FromDist(ToFloat(#Pdf(x)), dist)
let normalize = (dist): t => FromDist(ToDist(Normalize), dist)
let toPointSet = (dist): t => FromDist(ToDist(ToPointSet), dist)
let toSampleSet = (dist, r): t => FromDist(ToDist(ToSampleSet(r)), dist)
@ -165,63 +173,3 @@ module Constructors = {
)
}
}
module DistVariant = {
type t =
| Mean(genericDist)
| Sample(genericDist)
| Cdf(genericDist, float)
| Inv(genericDist, float)
| Pdf(genericDist, float)
| Normalize(genericDist)
| ToPointSet(genericDist)
| ToSampleSet(genericDist, int)
| Truncate(genericDist, option<float>, option<float>)
| Inspect(genericDist)
| ToString(genericDist)
| ToSparkline(genericDist, int)
| AlgebraicAdd(genericDist, genericDist)
| AlgebraicMultiply(genericDist, genericDist)
| AlgebraicDivide(genericDist, genericDist)
| AlgebraicSubtract(genericDist, genericDist)
| AlgebraicLogarithm(genericDist, genericDist)
| AlgebraicExponentiate(genericDist, genericDist)
| PointwiseAdd(genericDist, genericDist)
| PointwiseMultiply(genericDist, genericDist)
| PointwiseDivide(genericDist, genericDist)
| PointwiseSubtract(genericDist, genericDist)
| PointwiseLogarithm(genericDist, genericDist)
| PointwiseExponentiate(genericDist, genericDist)
let toGenericFunctionCallInfo = (t: t) =>
switch t {
| Mean(d) => Operation.FromDist(ToFloat(#Mean), d)
| Sample(d) => FromDist(ToFloat(#Mean), d)
| Cdf(d, f) => FromDist(ToFloat(#Cdf(f)), d)
| Inv(d, f) => FromDist(ToFloat(#Inv(f)), d)
| Pdf(d, f) => FromDist(ToFloat(#Pdf(f)), d)
| Normalize(d) => FromDist(ToDist(Normalize), d)
| ToPointSet(d) => FromDist(ToDist(ToPointSet), d)
| ToSampleSet(d, r) => FromDist(ToDist(ToSampleSet(r)), d)
| Truncate(d, left, right) => FromDist(ToDist(Truncate(left, right)), d)
| Inspect(d) => FromDist(ToDist(Inspect), d)
| ToString(d) => FromDist(ToString(ToString), d)
| ToSparkline(d, n) => FromDist(ToString(ToSparkline(n)), d)
| AlgebraicAdd(d1, d2) => FromDist(ToDistCombination(Algebraic, #Add, #Dist(d2)), d1)
| AlgebraicMultiply(d1, d2) => FromDist(ToDistCombination(Algebraic, #Multiply, #Dist(d2)), d1)
| AlgebraicDivide(d1, d2) => FromDist(ToDistCombination(Algebraic, #Divide, #Dist(d2)), d1)
| AlgebraicSubtract(d1, d2) => FromDist(ToDistCombination(Algebraic, #Subtract, #Dist(d2)), d1)
| AlgebraicLogarithm(d1, d2) =>
FromDist(ToDistCombination(Algebraic, #Logarithm, #Dist(d2)), d1)
| AlgebraicExponentiate(d1, d2) =>
FromDist(ToDistCombination(Algebraic, #Exponentiate, #Dist(d2)), d1)
| PointwiseAdd(d1, d2) => FromDist(ToDistCombination(Pointwise, #Add, #Dist(d2)), d1)
| PointwiseMultiply(d1, d2) => FromDist(ToDistCombination(Pointwise, #Multiply, #Dist(d2)), d1)
| PointwiseDivide(d1, d2) => FromDist(ToDistCombination(Pointwise, #Divide, #Dist(d2)), d1)
| PointwiseSubtract(d1, d2) => FromDist(ToDistCombination(Pointwise, #Subtract, #Dist(d2)), d1)
| PointwiseLogarithm(d1, d2) =>
FromDist(ToDistCombination(Pointwise, #Logarithm, #Dist(d2)), d1)
| PointwiseExponentiate(d1, d2) =>
FromDist(ToDistCombination(Pointwise, #Exponentiate, #Dist(d2)), d1)
}
}

View File

@ -203,8 +203,8 @@ let operate = (distToFloatOp: Operation.distToFloatOperation, s): float =>
| #Mean => T.mean(s)
}
let toSparkline = (t: t, n) =>
let toSparkline = (t: t, bucketCount) =>
T.toContinuous(t)
->E.O2.fmap(Continuous.downsampleEquallyOverX(n))
->E.O2.fmap(Continuous.downsampleEquallyOverX(bucketCount))
->E.O2.toResult("toContinous Error: Could not convert into continuous distribution")
->E.R2.fmap(r => Continuous.getShape(r).ys->Sparklines.create())

View File

@ -146,11 +146,20 @@ let toPointSetDist = (
samplesParse
}
//Randomly get one sample from the distribution
let sample = (t: t): float => {
let i = E.Int.random(~min=0, ~max=E.A.length(t) - 1)
E.A.unsafe_get(t, i)
}
/*
If asked for a length of samples shorter or equal the length of the distribution,
return this first n samples of this distribution.
Else, return n random samples of the distribution.
The former helps in cases where multiple distributions are correlated.
However, if n > length(t), then there's no clear right answer, so we just randomly
sample everything.
*/
let sampleN = (t: t, n) => {
if n <= E.A.length(t) {
E.A.slice(t, ~offset=0, ~len=n)

View File

@ -1,21 +0,0 @@
@genType
type functionCallInfo = GenericDist_Types.Operation.genericFunctionCallInfo;
@genType
type env = DistributionOperation.env;
@genType
type genericDist = GenericDist_Types.genericDist;
@genType
type error = GenericDist_Types.error;
@genType
let runDistributionOperation = DistributionOperation.run;
@genType
type resultDist = result<genericDist, error>
@genType
type resultFloat = result<float, error>
@genType
type resultString = result<string, error>

View File

@ -0,0 +1,24 @@
/*
This is meant as a file to contain @genType declarations as needed for Typescript.
I would ultimately want to have all @genType declarations here, vs. other files, but
@genType doesn't play as nicely with renaming Modules and functions as
would be preferable.
The below few seem to work fine. In the future there's definitely more work to do here.
*/
@genType
type env = DistributionOperation.env
@genType
type genericDist = GenericDist_Types.genericDist
@genType
type error = GenericDist_Types.error
@genType
type resultDist = result<genericDist, error>
@genType
type resultFloat = result<float, error>
@genType
type resultString = result<string, error>