logScore
now in interface.
Value: [1e-4 to 1e-1]
This commit is contained in:
parent
978e149913
commit
51310819a1
|
@ -145,7 +145,11 @@ let rec run = (~env, functionCallInfo: functionCallInfo): outputType => {
|
|||
}
|
||||
| ToDist(Normalize) => dist->GenericDist.normalize->Dist
|
||||
| ToScore(KLDivergence(t2)) =>
|
||||
GenericDist.klDivergence(dist, t2, ~toPointSetFn)
|
||||
GenericDist.Score.klDivergence(dist, t2, ~toPointSetFn)
|
||||
->E.R2.fmap(r => Float(r))
|
||||
->OutputLocal.fromResult
|
||||
| ToScore(LogScore(prediction, answer)) =>
|
||||
GenericDist.Score.logScore(dist, prediction, answer, ~toPointSetFn)
|
||||
->E.R2.fmap(r => Float(r))
|
||||
->OutputLocal.fromResult
|
||||
| ToBool(IsNormalized) => dist->GenericDist.isNormalized->Bool
|
||||
|
@ -262,6 +266,8 @@ module Constructors = {
|
|||
let normalize = (~env, dist) => C.normalize(dist)->run(~env)->toDistR
|
||||
let isNormalized = (~env, dist) => C.isNormalized(dist)->run(~env)->toBoolR
|
||||
let klDivergence = (~env, dist1, dist2) => C.klDivergence(dist1, dist2)->run(~env)->toFloatR
|
||||
let logScore = (~env, prior, prediction, answer) =>
|
||||
C.logScore(prior, prediction, answer)->run(~env)->toFloatR
|
||||
let toPointSet = (~env, dist) => C.toPointSet(dist)->run(~env)->toDistR
|
||||
let toSampleSet = (~env, dist, n) => C.toSampleSet(dist, n)->run(~env)->toDistR
|
||||
let fromSamples = (~env, xs) => C.fromSamples(xs)->run(~env)->toDistR
|
||||
|
|
|
@ -62,6 +62,8 @@ module Constructors: {
|
|||
@genType
|
||||
let klDivergence: (~env: env, genericDist, genericDist) => result<float, error>
|
||||
@genType
|
||||
let logScore: (~env: env, genericDist, genericDist, float) => result<float, error>
|
||||
@genType
|
||||
let toPointSet: (~env: env, genericDist) => result<genericDist, error>
|
||||
@genType
|
||||
let toSampleSet: (~env: env, genericDist, int) => result<genericDist, error>
|
||||
|
|
|
@ -91,7 +91,7 @@ module DistributionOperation = {
|
|||
| ToString
|
||||
| ToSparkline(int)
|
||||
|
||||
type toScore = KLDivergence(genericDist)
|
||||
type toScore = KLDivergence(genericDist) | LogScore(genericDist, float)
|
||||
|
||||
type fromDist =
|
||||
| ToFloat(toFloat)
|
||||
|
@ -120,6 +120,7 @@ module DistributionOperation = {
|
|||
| ToFloat(#Sample) => `sample`
|
||||
| ToFloat(#IntegralSum) => `integralSum`
|
||||
| ToScore(KLDivergence(_)) => `klDivergence`
|
||||
| ToScore(LogScore(_, x)) => `logScore against ${E.Float.toFixed(x)}`
|
||||
| ToDist(Normalize) => `normalize`
|
||||
| ToDist(ToPointSet) => `toPointSet`
|
||||
| ToDist(ToSampleSet(r)) => `toSampleSet(${E.I.toString(r)})`
|
||||
|
@ -161,6 +162,10 @@ module Constructors = {
|
|||
let truncate = (dist, left, right): t => FromDist(ToDist(Truncate(left, right)), dist)
|
||||
let inspect = (dist): t => FromDist(ToDist(Inspect), dist)
|
||||
let klDivergence = (dist1, dist2): t => FromDist(ToScore(KLDivergence(dist2)), dist1)
|
||||
let logScore = (prior, prediction, answer): t => FromDist(
|
||||
ToScore(LogScore(prediction, answer)),
|
||||
prior,
|
||||
)
|
||||
let scalePower = (dist, n): t => FromDist(ToDist(Scale(#Power, n)), dist)
|
||||
let scaleLogarithm = (dist, n): t => FromDist(ToDist(Scale(#Logarithm, n)), dist)
|
||||
let scaleLogarithmWithThreshold = (dist, n, eps): t => FromDist(
|
||||
|
|
|
@ -59,6 +59,7 @@ let integralEndY = (t: t): float =>
|
|||
|
||||
let isNormalized = (t: t): bool => Js.Math.abs_float(integralEndY(t) -. 1.0) < 1e-7
|
||||
|
||||
module Score = {
|
||||
let klDivergence = (t1, t2, ~toPointSetFn: toPointSetFn): result<float, error> => {
|
||||
let pointSets = E.R.merge(toPointSetFn(t1), toPointSetFn(t2))
|
||||
pointSets |> E.R2.bind(((a, b)) =>
|
||||
|
@ -66,6 +67,14 @@ let klDivergence = (t1, t2, ~toPointSetFn: toPointSetFn): result<float, error> =
|
|||
)
|
||||
}
|
||||
|
||||
let logScore = (prior, prediction, answer, ~toPointSetFn: toPointSetFn): result<float, error> => {
|
||||
let pointSets = E.R.merge(toPointSetFn(prior), toPointSetFn(prediction))
|
||||
pointSets |> E.R2.bind(((a, b)) =>
|
||||
PointSetDist.T.logScore(a, b, answer)->E.R2.errMap(x => DistributionTypes.OperationError(x))
|
||||
)
|
||||
}
|
||||
}
|
||||
|
||||
let toFloatOperation = (
|
||||
t,
|
||||
~toPointSetFn: toPointSetFn,
|
||||
|
|
|
@ -23,7 +23,10 @@ let toFloatOperation: (
|
|||
~distToFloatOperation: DistributionTypes.DistributionOperation.toFloat,
|
||||
) => result<float, error>
|
||||
|
||||
module Score: {
|
||||
let klDivergence: (t, t, ~toPointSetFn: toPointSetFn) => result<float, error>
|
||||
let logScore: (t, t, float, ~toPointSetFn: toPointSetFn) => result<float, error>
|
||||
}
|
||||
|
||||
@genType
|
||||
let toPointSet: (
|
||||
|
|
|
@ -287,10 +287,6 @@ module T = Dist({
|
|||
)
|
||||
newShape->E.R2.fmap(x => x->make->integralEndY)
|
||||
}
|
||||
let logScoreAgainstImproperPrior = (prediction: t, answer: float) => {
|
||||
let prior = make({xs: prediction.xyShape.xs, ys: E.A.fmap(_ => 1.0, prediction.xyShape.xs)})
|
||||
logScore(prior, prediction, answer)
|
||||
}
|
||||
})
|
||||
|
||||
let isNormalized = (t: t): bool => {
|
||||
|
|
|
@ -232,7 +232,4 @@ module T = Dist({
|
|||
let logScore = (prior: t, prediction: t, answer: float) => {
|
||||
Error(Operation.NotYetImplemented)
|
||||
}
|
||||
let logScoreAgainstImproperPrior = (prediction: t, answer: float) => {
|
||||
Error(Operation.NotYetImplemented)
|
||||
}
|
||||
})
|
||||
|
|
|
@ -35,7 +35,6 @@ module type dist = {
|
|||
let variance: t => float
|
||||
let klDivergence: (t, t) => result<float, Operation.Error.t>
|
||||
let logScore: (t, t, float) => result<float, Operation.Error.t>
|
||||
let logScoreAgainstImproperPrior: (t, float) => result<float, Operation.Error.t>
|
||||
}
|
||||
|
||||
module Dist = (T: dist) => {
|
||||
|
@ -60,7 +59,6 @@ module Dist = (T: dist) => {
|
|||
let integralEndY = T.integralEndY
|
||||
let klDivergence = T.klDivergence
|
||||
let logScore = T.logScore
|
||||
let logScoreAgainstImproperPrior = T.logScoreAgainstImproperPrior
|
||||
|
||||
let updateIntegralCache = T.updateIntegralCache
|
||||
|
||||
|
|
|
@ -309,9 +309,6 @@ module T = Dist({
|
|||
let logScore = (prior: t, prediction: t, answer: float) => {
|
||||
Error(Operation.NotYetImplemented)
|
||||
}
|
||||
let logScoreAgainstImproperPrior = (prediction: t, answer: float) => {
|
||||
Error(Operation.NotYetImplemented)
|
||||
}
|
||||
})
|
||||
|
||||
let combineAlgebraically = (op: Operation.convolutionOperation, t1: t, t2: t): t => {
|
||||
|
|
|
@ -12,6 +12,7 @@ module Epsilon = {
|
|||
module Environment = {
|
||||
let defaultXYPointLength = 1000
|
||||
let defaultSampleCount = 10000
|
||||
let sparklineLength = 20
|
||||
}
|
||||
|
||||
module OpCost = {
|
||||
|
|
|
@ -157,6 +157,20 @@ module Helpers = {
|
|||
}
|
||||
}
|
||||
}
|
||||
let constructNonNormalizedPointSet = (
|
||||
~supportOf: DistributionTypes.genericDist,
|
||||
fn: float => float,
|
||||
): option<DistributionTypes.genericDist> => {
|
||||
switch supportOf {
|
||||
| PointSet(Continuous(dist)) =>
|
||||
{xs: dist.xyShape.xs, ys: E.A.fmap(fn, dist.xyShape.xs)}
|
||||
->Continuous.make
|
||||
->Continuous
|
||||
->PointSet
|
||||
->Some
|
||||
| _ => None
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
module SymbolicConstructors = {
|
||||
|
@ -219,7 +233,8 @@ let dispatchToGenericOutput = (call: ExpressionValue.functionCall, _environment)
|
|||
| ("mean", [EvDistribution(dist)]) => Helpers.toFloatFn(#Mean, dist)
|
||||
| ("integralSum", [EvDistribution(dist)]) => Helpers.toFloatFn(#IntegralSum, dist)
|
||||
| ("toString", [EvDistribution(dist)]) => Helpers.toStringFn(ToString, dist)
|
||||
| ("toSparkline", [EvDistribution(dist)]) => Helpers.toStringFn(ToSparkline(20), dist)
|
||||
| ("toSparkline", [EvDistribution(dist)]) =>
|
||||
Helpers.toStringFn(ToSparkline(MagicNumbers.Environment.sparklineLength), dist)
|
||||
| ("toSparkline", [EvDistribution(dist), EvNumber(n)]) =>
|
||||
Helpers.toStringFn(ToSparkline(Belt.Float.toInt(n)), dist)
|
||||
| ("exp", [EvDistribution(a)]) =>
|
||||
|
@ -233,6 +248,21 @@ let dispatchToGenericOutput = (call: ExpressionValue.functionCall, _environment)
|
|||
| ("normalize", [EvDistribution(dist)]) => Helpers.toDistFn(Normalize, dist)
|
||||
| ("klDivergence", [EvDistribution(a), EvDistribution(b)]) =>
|
||||
Some(runGenericOperation(FromDist(ToScore(KLDivergence(b)), a)))
|
||||
| ("logScore", [EvDistribution(prior), EvDistribution(prediction), EvNumber(answer)])
|
||||
| (
|
||||
"logScore",
|
||||
[EvDistribution(prior), EvDistribution(prediction), EvDistribution(Symbolic(#Float(answer)))],
|
||||
) =>
|
||||
Some(runGenericOperation(FromDist(ToScore(LogScore(prediction, answer)), prior)))
|
||||
| ("logScoreAgainstImproperPrior", [EvDistribution(prediction), EvNumber(answer)])
|
||||
| (
|
||||
"logScoreAgainstImproperPrior",
|
||||
[EvDistribution(prediction), EvDistribution(Symbolic(#Float(answer)))],
|
||||
) =>
|
||||
E.O.fmap(
|
||||
d => runGenericOperation(FromDist(ToScore(LogScore(prediction, answer)), d)),
|
||||
Helpers.constructNonNormalizedPointSet(~supportOf=prediction, _ => 1.0),
|
||||
)
|
||||
| ("isNormalized", [EvDistribution(dist)]) => Helpers.toBoolFn(IsNormalized, dist)
|
||||
| ("toPointSet", [EvDistribution(dist)]) => Helpers.toDistFn(ToPointSet, dist)
|
||||
| ("scaleLog", [EvDistribution(dist)]) =>
|
||||
|
|
Loading…
Reference in New Issue
Block a user