Merged with develop

This commit is contained in:
Ozzie Gooen 2022-04-14 20:18:20 -04:00
commit 4918ee790a
22 changed files with 1029 additions and 30677 deletions

5
.github/ISSUE_TEMPLATE/config.yml vendored Normal file
View File

@ -0,0 +1,5 @@
blank_issues_enabled: true
contact_links:
- name: Ideas and feature requests - Squiggle Discussions on GitHub
url: https://github.com/quantified-uncertainty/squiggle/discussions
about: Please propose and discuss new features here. Remember to search for your idea before posting a new topic! Where would you like to see Squiggle go over the next few months, several months, or few years?

View File

@ -1,6 +0,0 @@
---
name: Idea or feature request
about: Where would you like to see Squiggle go over the next few months, several months, or few years?
---
# Description

View File

@ -6,7 +6,9 @@ labels: "ops & testing"
# Description:
<!-- delete this section if testing task or otherwise not applicable -->
# The OS and version, yarn version, etc. in which this came up
<!-- delete this section if testing task or otherwise not applicable -->
# Desired behavior

View File

@ -4,14 +4,10 @@ on:
push:
branches:
- master
- production
- staging
- develop
pull_request:
branches:
- master
- production
- staging
- develop
jobs:

View File

@ -9,7 +9,7 @@
"@testing-library/user-event": "^14.0.4",
"@types/jest": "^27.4.0",
"@types/lodash": "^4.14.181",
"@types/node": "^17.0.23",
"@types/node": "^17.0.24",
"@types/react": "^18.0.3",
"@types/react-dom": "^18.0.0",
"@types/styled-components": "^5.1.25",
@ -68,14 +68,14 @@
},
"devDependencies": {
"@babel/plugin-proposal-private-property-in-object": "^7.16.7",
"@storybook/addon-actions": "^6.4.20",
"@storybook/addon-essentials": "^6.4.20",
"@storybook/addon-links": "^6.4.20",
"@storybook/builder-webpack5": "^6.4.20",
"@storybook/manager-webpack5": "^6.4.20",
"@storybook/node-logger": "^6.4.20",
"@storybook/addon-actions": "^6.4.22",
"@storybook/addon-essentials": "^6.4.22",
"@storybook/addon-links": "^6.4.22",
"@storybook/builder-webpack5": "^6.4.22",
"@storybook/manager-webpack5": "^6.4.22",
"@storybook/node-logger": "^6.4.22",
"@storybook/preset-create-react-app": "^4.1.0",
"@storybook/react": "^6.4.20",
"@storybook/react": "^6.4.22",
"@types/styled-components": "^5.1.24",
"@types/webpack": "^5.28.0",
"react-codejar": "^1.1.2",

View File

@ -1,15 +1,64 @@
/*
This is the most basic file in our invariants family of tests.
See document in https://github.com/quantified-uncertainty/squiggle/pull/238 for details
Validate that the addition of means equals the mean of the addition, similar for subtraction and multiplication.
Note: digits parameter should be higher than -4.
Details in https://develop--squiggle-documentation.netlify.app/docs/internal/invariants/
Note: epsilon of 1e3 means the invariants are, in general, not being satisfied.
*/
open Jest
open Expect
open TestHelpers
module Internals = {
let epsilon = 5e1
let mean = GenericDist_Types.Constructors.UsingDists.mean
let expectImpossiblePath: string => assertion = algebraicOp =>
`${algebraicOp} has`->expect->toEqual("failed")
let distributions = list{
normalMake(4e0, 1e0),
betaMake(2e0, 4e0),
exponentialMake(1.234e0),
uniformMake(7e0, 1e1),
// cauchyMake(1e0, 1e0),
lognormalMake(2e0, 1e0),
triangularMake(1e0, 1e1, 5e1),
Ok(floatMake(1e1)),
}
let pairsOfDifferentDistributions = E.L.combinations2(distributions)
let runMean: DistributionTypes.genericDist => float = dist => {
dist->mean->run->toFloat->E.O2.toExn("Shouldn't see this because we trust testcase input")
}
let testOperationMean = (
distOp: (
DistributionTypes.genericDist,
DistributionTypes.genericDist,
) => result<DistributionTypes.genericDist, DistributionTypes.error>,
description: string,
floatOp: (float, float) => float,
dist1': SymbolicDistTypes.symbolicDist,
dist2': SymbolicDistTypes.symbolicDist,
~epsilon: float,
) => {
let dist1 = dist1'->DistributionTypes.Symbolic
let dist2 = dist2'->DistributionTypes.Symbolic
let received =
distOp(dist1, dist2)->E.R2.fmap(mean)->E.R2.fmap(run)->E.R2.fmap(toFloat)->E.R.toExn
let expected = floatOp(runMean(dist1), runMean(dist2))
switch received {
| None => expectImpossiblePath(description)
| Some(x) => expectErrorToBeBounded(x, expected, ~epsilon)
}
}
}
let {
algebraicAdd,
algebraicMultiply,
@ -26,115 +75,82 @@ let algebraicSubtract = algebraicSubtract(~env)
let algebraicLogarithm = algebraicLogarithm(~env)
let algebraicPower = algebraicPower(~env)
describe("Mean", () => {
let digits = -4
let {testOperationMean, distributions, pairsOfDifferentDistributions, epsilon} = module(Internals)
let mean = GenericDist_Types.Constructors.UsingDists.mean
describe("Means are invariant", () => {
describe("for addition", () => {
let testAdditionMean = testOperationMean(algebraicAdd, "algebraicAdd", \"+.", ~epsilon)
let runMean: result<DistributionTypes.genericDist, DistributionTypes.error> => float = distR => {
distR
->E.R2.fmap(mean)
->E.R2.fmap(run)
->E.R2.fmap(toFloat)
->E.R.toExn
->E.O2.toExn("Shouldn't see this because we trust testcase input")
}
let impossiblePath: string => assertion = algebraicOp =>
`${algebraicOp} has`->expect->toEqual("failed")
let distributions = list{
normalMake(0.0, 1e0),
betaMake(2e0, 4e0),
exponentialMake(1.234e0),
uniformMake(7e0, 1e1),
// cauchyMake(1e0, 1e0),
lognormalMake(1e0, 1e0),
triangularMake(1e0, 1e1, 5e1),
Ok(floatMake(1e1)),
}
let combinations = E.L.combinations2(distributions)
let zipDistsDists = E.L.zip(distributions, distributions)
let testOperationMean = (
distOp: (DistributionTypes.genericDist, DistributionTypes.genericDist) => result<DistributionTypes.genericDist, DistributionTypes.error>,
description: string,
floatOp: (float, float) => float,
dist1': result<SymbolicDistTypes.symbolicDist, string>,
dist2': result<SymbolicDistTypes.symbolicDist, string>
) => {
let dist1 = dist1'->E.R2.fmap(x=>DistributionTypes.Symbolic(x))->E.R2.fmap2(s=>DistributionTypes.Other(s))
let dist2 = dist2'->E.R2.fmap(x=>DistributionTypes.Symbolic(x))->E.R2.fmap2(s=>DistributionTypes.Other(s))
let received =
E.R.liftJoin2(distOp, dist1, dist2)
->E.R2.fmap(mean)
->E.R2.fmap(run)
->E.R2.fmap(toFloat)
let expected = floatOp(runMean(dist1), runMean(dist2))
switch received {
| Error(err) => impossiblePath(description)
| Ok(x) =>
switch x {
| None => impossiblePath(description)
| Some(x) => x->expect->toBeSoCloseTo(expected, ~digits)
}
}
}
describe("addition", () => {
let testAdditionMean = testOperationMean(algebraicAdd, "algebraicAdd", \"+.")
testAll("homogeneous addition", zipDistsDists, dists => {
let (dist1, dist2) = dists
testAdditionMean(dist1, dist2)
testAll("with two of the same distribution", distributions, dist => {
E.R.liftM2(testAdditionMean, dist, dist)->E.R.toExn
})
testAll("heterogeneous addition (1)", combinations, dists => {
testAll("with two different distributions", pairsOfDifferentDistributions, dists => {
let (dist1, dist2) = dists
testAdditionMean(dist1, dist2)
E.R.liftM2(testAdditionMean, dist1, dist2)->E.R.toExn
})
testAll("heterogeneous addition (commuted of 1 (or; 2))", combinations, dists => {
let (dist1, dist2) = dists
testAdditionMean(dist2, dist1)
})
testAll(
"with two different distributions in swapped order",
pairsOfDifferentDistributions,
dists => {
let (dist1, dist2) = dists
E.R.liftM2(testAdditionMean, dist2, dist1)->E.R.toExn
},
)
})
describe("subtraction", () => {
let testSubtractionMean = testOperationMean(algebraicSubtract, "algebraicSubtract", \"-.")
describe("for subtraction", () => {
let testSubtractionMean = testOperationMean(
algebraicSubtract,
"algebraicSubtract",
\"-.",
~epsilon,
)
testAll("homogeneous subtraction", zipDistsDists, dists => {
let (dist1, dist2) = dists
testSubtractionMean(dist1, dist2)
testAll("with two of the same distribution", distributions, dist => {
E.R.liftM2(testSubtractionMean, dist, dist)->E.R.toExn
})
testAll("heterogeneous subtraction (1)", combinations, dists => {
testAll("with two different distributions", pairsOfDifferentDistributions, dists => {
let (dist1, dist2) = dists
testSubtractionMean(dist1, dist2)
E.R.liftM2(testSubtractionMean, dist1, dist2)->E.R.toExn
})
testAll("heterogeneous subtraction (commuted of 1 (or; 2))", combinations, dists => {
let (dist1, dist2) = dists
testSubtractionMean(dist2, dist1)
})
testAll(
"with two different distributions in swapped order",
pairsOfDifferentDistributions,
dists => {
let (dist1, dist2) = dists
E.R.liftM2(testSubtractionMean, dist2, dist1)->E.R.toExn
},
)
})
describe("multiplication", () => {
let testMultiplicationMean = testOperationMean(algebraicMultiply, "algebraicMultiply", \"*.")
describe("for multiplication", () => {
let testMultiplicationMean = testOperationMean(
algebraicMultiply,
"algebraicMultiply",
\"*.",
~epsilon,
)
testAll("homogeneous subtraction", zipDistsDists, dists => {
let (dist1, dist2) = dists
testMultiplicationMean(dist1, dist2)
testAll("with two of the same distribution", distributions, dist => {
E.R.liftM2(testMultiplicationMean, dist, dist)->E.R.toExn
})
testAll("heterogeneoous subtraction (1)", combinations, dists => {
testAll("with two different distributions", pairsOfDifferentDistributions, dists => {
let (dist1, dist2) = dists
testMultiplicationMean(dist1, dist2)
E.R.liftM2(testMultiplicationMean, dist1, dist2)->E.R.toExn
})
testAll("heterogeneoous subtraction (commuted of 1 (or; 2))", combinations, dists => {
let (dist1, dist2) = dists
testMultiplicationMean(dist2, dist1)
})
testAll(
"with two different distributions in swapped order",
pairsOfDifferentDistributions,
dists => {
let (dist1, dist2) = dists
E.R.liftM2(testMultiplicationMean, dist2, dist1)->E.R.toExn
},
)
})
})

View File

@ -19,12 +19,12 @@ describe("eval on distribution functions", () => {
testEval("lognormal(5,2)", "Ok(Lognormal(5,2))")
})
describe("unaryMinus", () => {
testEval("mean(-normal(5,2))", "Ok(-5.002887370380851)")
testEval("mean(-normal(5,2))", "Ok(-5)")
})
describe("to", () => {
testEval("5 to 2", "Error(TODO: Low value must be less than high value.)")
testEval("to(2,5)", "Ok(Lognormal(1.1512925464970227,0.278507821238345))")
testEval("to(-2,2)", "Ok(Normal(0,1.215913388057542))")
testEval("to(2,5)", "Ok(Lognormal(1.1512925464970227,0.27853260523016377))")
testEval("to(-2,2)", "Ok(Normal(0,1.2159136638235384))")
})
describe("mean", () => {
testEval("mean(normal(5,2))", "Ok(5)")
@ -45,10 +45,30 @@ describe("eval on distribution functions", () => {
describe("add", () => {
testEval("add(normal(5,2), normal(10,2))", "Ok(Normal(15,2.8284271247461903))")
testEval("add(normal(5,2), lognormal(10,2))", "Ok(Sample Set Distribution)")
testEval("add(normal(5,2), 3)", "Ok(Point Set Distribution)")
testEval("add(3, normal(5,2))", "Ok(Point Set Distribution)")
testEval("3+normal(5,2)", "Ok(Point Set Distribution)")
testEval("normal(5,2)+3", "Ok(Point Set Distribution)")
testEval("add(normal(5,2), 3)", "Ok(Normal(8,2))")
testEval("add(3, normal(5,2))", "Ok(Normal(8,2))")
testEval("3+normal(5,2)", "Ok(Normal(8,2))")
testEval("normal(5,2)+3", "Ok(Normal(8,2))")
})
describe("subtract", () => {
testEval("10 - normal(5, 1)", "Ok(Normal(5,1))")
testEval("normal(5, 1) - 10", "Ok(Normal(-5,1))")
})
describe("multiply", () => {
testEval("normal(10, 2) * 2", "Ok(Normal(20,4))")
testEval("2 * normal(10, 2)", "Ok(Normal(20,4))")
testEval("lognormal(5,2) * lognormal(10,2)", "Ok(Lognormal(15,2.8284271247461903))")
testEval("lognormal(10, 2) * lognormal(5, 2)", "Ok(Lognormal(15,2.8284271247461903))")
testEval("2 * lognormal(5, 2)", "Ok(Lognormal(5.693147180559945,2))")
testEval("lognormal(5, 2) * 2", "Ok(Lognormal(5.693147180559945,2))")
})
describe("division", () => {
testEval("lognormal(5,2) / lognormal(10,2)", "Ok(Lognormal(-5,4))")
testEval("lognormal(10,2) / lognormal(5,2)", "Ok(Lognormal(5,4))")
testEval("lognormal(5, 2) / 2", "Ok(Lognormal(4.306852819440055,2))")
testEval("2 / lognormal(5, 2)", "Ok(Lognormal(-4.306852819440055,2))")
testEval("2 / normal(10, 2)", "Ok(Point Set Distribution)")
testEval("normal(10, 2) / 2", "Ok(Normal(5,1))")
})
describe("truncate", () => {
testEval("truncateLeft(normal(5,2), 3)", "Ok(Point Set Distribution)")
@ -101,6 +121,10 @@ describe("parse on distribution functions", () => {
testParse("3 ^ normal(5,1)", "Ok((:pow 3 (:normal 5 1)))")
testParse("normal(5,2) ^ 3", "Ok((:pow (:normal 5 2) 3))")
})
describe("subtraction", () => {
testParse("10 - normal(5,1)", "Ok((:subtract 10 (:normal 5 1)))")
testParse("normal(5,1) - 10", "Ok((:subtract (:normal 5 1) 10))")
})
describe("pointwise arithmetic expressions", () => {
testParse(~skip=true, "normal(5,2) .+ normal(5,1)", "Ok((:dotAdd (:normal 5 2) (:normal 5 1)))")
testParse(

View File

@ -1,6 +1,25 @@
open Jest
open Expect
/*
This encodes the expression for percent error
The test says "the percent error of received against expected is bounded by epsilon"
However, the semantics are degraded by catching some numerical instability:
when expected is too small, the return of this function might blow up to infinity.
So we capture that by taking the max of abs(expected) against a 1.
A sanity check of this function would be welcome, in general it is a better way of approaching
squiggle-lang tests than toBeSoCloseTo.
*/
let expectErrorToBeBounded = (received, expected, ~epsilon) => {
let distance = Js.Math.abs_float(received -. expected)
let expectedAbs = Js.Math.abs_float(expected)
let normalizingDenom = Js.Math.max_float(expectedAbs, 1e0)
let error = distance /. normalizingDenom
error->expect->toBeLessThan(epsilon)
}
let makeTest = (~only=false, str, item1, item2) =>
only
? Only.test(str, () => expect(item1)->toEqual(item2))

View File

@ -1,5 +1,8 @@
open SymbolicDistTypes
let normal95confidencePoint = 1.6448536269514722
// explained in website/docs/internal/ProcessingConfidenceIntervals
module Normal = {
type t = normal
let make = (mean: float, stdev: float): result<symbolicDist, string> =>
@ -11,7 +14,7 @@ module Normal = {
let from90PercentCI = (low, high) => {
let mean = E.A.Floats.mean([low, high])
let stdev = (high -. low) /. (2. *. 1.644854)
let stdev = (high -. low) /. (2. *. normal95confidencePoint)
#Normal({mean: mean, stdev: stdev})
}
let inv = (p, t: t) => Jstat.Normal.inv(p, t.mean, t.stdev)
@ -21,12 +24,12 @@ module Normal = {
let add = (n1: t, n2: t) => {
let mean = n1.mean +. n2.mean
let stdev = sqrt(n1.stdev ** 2. +. n2.stdev ** 2.)
let stdev = Js.Math.sqrt(n1.stdev ** 2. +. n2.stdev ** 2.)
#Normal({mean: mean, stdev: stdev})
}
let subtract = (n1: t, n2: t) => {
let mean = n1.mean -. n2.mean
let stdev = sqrt(n1.stdev ** 2. +. n2.stdev ** 2.)
let stdev = Js.Math.sqrt(n1.stdev ** 2. +. n2.stdev ** 2.)
#Normal({mean: mean, stdev: stdev})
}
@ -44,6 +47,23 @@ module Normal = {
| #Subtract => Some(subtract(n1, n2))
| _ => None
}
let operateFloatFirst = (operation: Operation.Algebraic.t, n1: float, n2: t) =>
switch operation {
| #Add => Some(#Normal({mean: n1 +. n2.mean, stdev: n2.stdev}))
| #Subtract => Some(#Normal({mean: n1 -. n2.mean, stdev: n2.stdev}))
| #Multiply => Some(#Normal({mean: n1 *. n2.mean, stdev: n1 *. n2.stdev}))
| _ => None
}
let operateFloatSecond = (operation: Operation.Algebraic.t, n1: t, n2: float) =>
switch operation {
| #Add => Some(#Normal({mean: n1.mean +. n2, stdev: n1.stdev}))
| #Subtract => Some(#Normal({mean: n1.mean -. n2, stdev: n1.stdev}))
| #Multiply => Some(#Normal({mean: n1.mean *. n2, stdev: n1.stdev *. n2}))
| #Divide => Some(#Normal({mean: n1.mean /. n2, stdev: n1.stdev /. n2}))
| _ => None
}
}
module Exponential = {
@ -115,19 +135,22 @@ module Lognormal = {
let mean = (t: t) => Ok(Jstat.Lognormal.mean(t.mu, t.sigma))
let sample = (t: t) => Jstat.Lognormal.sample(t.mu, t.sigma)
let toString = ({mu, sigma}: t) => j`Lognormal($mu,$sigma)`
let from90PercentCI = (low, high) => {
let logLow = Js.Math.log(low)
let logHigh = Js.Math.log(high)
let mu = E.A.Floats.mean([logLow, logHigh])
let sigma = (logHigh -. logLow) /. (2.0 *. 1.645)
let sigma = (logHigh -. logLow) /. (2.0 *. normal95confidencePoint)
#Lognormal({mu: mu, sigma: sigma})
}
let fromMeanAndStdev = (mean, stdev) => {
// https://math.stackexchange.com/questions/2501783/parameters-of-a-lognormal-distribution
// https://wikiless.org/wiki/Log-normal_distribution?lang=en#Generation_and_parameters
if stdev > 0.0 {
let variance = Js.Math.pow_float(~base=stdev, ~exp=2.0)
let meanSquared = Js.Math.pow_float(~base=mean, ~exp=2.0)
let mu = Js.Math.log(mean) -. 0.5 *. Js.Math.log(variance /. meanSquared +. 1.0)
let sigma = Js.Math.pow_float(~base=Js.Math.log(variance /. meanSquared +. 1.0), ~exp=0.5)
let variance = stdev ** 2.
let meanSquared = mean ** 2.
let mu = 2. *. Js.Math.log(mean) -. 0.5 *. Js.Math.log(variance +. meanSquared)
let sigma = Js.Math.sqrt(Js.Math.log(variance /. meanSquared +. 1.))
Ok(#Lognormal({mu: mu, sigma: sigma}))
} else {
Error("Lognormal standard deviation must be larger than 0")
@ -135,8 +158,9 @@ module Lognormal = {
}
let multiply = (l1, l2) => {
// https://wikiless.org/wiki/Log-normal_distribution?lang=en#Multiplication_and_division_of_independent,_log-normal_random_variables
let mu = l1.mu +. l2.mu
let sigma = l1.sigma +. l2.sigma
let sigma = Js.Math.sqrt(l1.sigma ** 2. +. l2.sigma ** 2.) // m
#Lognormal({mu: mu, sigma: sigma})
}
let divide = (l1, l2) => {
@ -152,6 +176,22 @@ module Lognormal = {
| #Divide => Some(divide(n1, n2))
| _ => None
}
let operateFloatFirst = (operation: Operation.Algebraic.t, n1: float, n2: t) =>
switch operation {
| #Multiply =>
n1 > 0.0 ? Some(#Lognormal({mu: Js.Math.log(n1) +. n2.mu, sigma: n2.sigma})) : None
| #Divide => n1 > 0.0 ? Some(#Lognormal({mu: Js.Math.log(n1) -. n2.mu, sigma: n2.sigma})) : None
| _ => None
}
let operateFloatSecond = (operation: Operation.Algebraic.t, n1: t, n2: float) =>
switch operation {
| #Multiply =>
n2 > 0.0 ? Some(#Lognormal({mu: n1.mu +. Js.Math.log(n2), sigma: n1.sigma})) : None
| #Divide => n2 > 0.0 ? Some(#Lognormal({mu: n1.mu -. Js.Math.log(n2), sigma: n1.sigma})) : None
| _ => None
}
}
module Uniform = {
@ -343,8 +383,28 @@ module T = {
}
| (#Normal(v1), #Normal(v2)) =>
Normal.operate(op, v1, v2) |> E.O.dimap(r => #AnalyticalSolution(r), () => #NoSolution)
| (#Float(v1), #Normal(v2)) =>
Normal.operateFloatFirst(op, v1, v2) |> E.O.dimap(
r => #AnalyticalSolution(r),
() => #NoSolution,
)
| (#Normal(v1), #Float(v2)) =>
Normal.operateFloatSecond(op, v1, v2) |> E.O.dimap(
r => #AnalyticalSolution(r),
() => #NoSolution,
)
| (#Lognormal(v1), #Lognormal(v2)) =>
Lognormal.operate(op, v1, v2) |> E.O.dimap(r => #AnalyticalSolution(r), () => #NoSolution)
| (#Float(v1), #Lognormal(v2)) =>
Lognormal.operateFloatFirst(op, v1, v2) |> E.O.dimap(
r => #AnalyticalSolution(r),
() => #NoSolution,
)
| (#Lognormal(v1), #Float(v2)) =>
Lognormal.operateFloatSecond(op, v1, v2) |> E.O.dimap(
r => #AnalyticalSolution(r),
() => #NoSolution,
)
| _ => #NoSolution
}

View File

@ -117,7 +117,8 @@ module Helpers = {
| Error(err) => GenDistError(ArgumentError(err))
}
}
| Some(EvDistribution(b)) => switch parseDistributionArray(args) {
| Some(EvDistribution(b)) =>
switch parseDistributionArray(args) {
| Ok(distributions) => mixtureWithDefaultWeights(distributions)
| Error(err) => GenDistError(ArgumentError(err))
}

View File

@ -2,21 +2,24 @@
This website is built using [Docusaurus 2](https://docusaurus.io/), a modern static website generator.
## Build for development and production
# Build for development
This one actually works without running `yarn` at the monorepo level, but it doesn't hurt. You must at least run it at this package level
We assume you ran `yarn` at monorepo level.
The website depends on `squiggle-lang`, which you have to build manually.
```sh
yarn
cd ../squiggle-lang
yarn build
```
This command generates static content into the `build` directory and can be served using any static contents hosting service.
Generate static content, to the `build` directory.
```sh
yarn build
```
Your local dev server is here, opening up a browser window.
Open a local dev server
```sh
yarn start

View File

@ -0,0 +1,126 @@
---
title: Statistical properties of algebraic combinations of distributions for property testing.
urlcolor: blue
author:
- Nuño Sempere
- Quinn Dougherty
abstract: This document outlines some properties about algebraic combinations of distributions. It is meant to facilitate property tests for [Squiggle](https://squiggle-language.com/), an estimation language for forecasters. So far, we are focusing on the means, the standard deviation and the shape of the pdfs.
---
_This document right now is normative and aspirational, not a description of the testing that's currently done_.
The academic keyword to search for in relation to this document is "[algebra of random variables](https://wikiless.org/wiki/Algebra_of_random_variables?lang=en)". Squiggle doesn't yet support getting the standard deviation, denoted by $\sigma$, but such support could yet be added.
## Means and standard deviations
### Sums
$$
mean(f+g) = mean(f) + mean(g)
$$
$$
\sigma(f+g) = \sqrt{\sigma(f)^2 + \sigma(g)^2}
$$
In the case of normal distributions,
$$
mean(normal(a,b) + normal(c,d)) = mean(normal(a+c, \sqrt{b^2 + d^2}))
$$
### Subtractions
$$
mean(f-g) = mean(f) - mean(g)
$$
$$
\sigma(f-g) = \sqrt{\sigma(f)^2 + \sigma(g)^2}
$$
### Multiplications
$$
mean(f \cdot g) = mean(f) \cdot mean(g)
$$
$$
\sigma(f \cdot g) = \sqrt{ (\sigma(f)^2 + mean(f)) \cdot (\sigma(g)^2 + mean(g)) - (mean(f) \cdot mean(g))^2}
$$
### Divisions
Divisions are tricky, and in general we don't have good expressions to characterize properties of ratios. In particular, the ratio of two normals is a Cauchy distribution, which doesn't have to have a mean.
## Probability density functions (pdfs)
Specifying the pdf of the sum/multiplication/... of distributions as a function of the pdfs of the individual arguments can still be done. But it requires integration. My sense is that this is still doable, and I (Nuño) provide some _pseudocode_ to do this.
### Sums
Let $f, g$ be two independently distributed functions. Then, the pdf of their sum, evaluated at a point $z$, expressed as $(f + g)(z)$, is given by:
$$
(f + g)(z)= \int_{-\infty}^{\infty} f(x)\cdot g(z-x) \,dx
$$
See a proof sketch [here](https://www.milefoot.com/math/stat/rv-sums.htm)
Here is some pseudocode to approximate this:
```js
// pdf1 and pdf2 are pdfs,
// and cdf1 and cdf2 are their corresponding cdfs
let epsilonForBounds = 2 ** -16;
let getBounds = (cdf) => {
let cdf_min = -1;
let cdf_max = 1;
let n = 0;
while (
(cdf(cdf_min) > epsilonForBounds || 1 - cdf(cdf_max) > epsilonForBounds) &&
n < 10
) {
if (cdf(cdf_min) > epsilonForBounds) {
cdf_min = cdf_min * 2;
}
if (1 - cdf(cdf_max) > epsilonForBounds) {
cdf_max = cdf_max * 2;
}
}
return [cdf_min, cdf_max];
};
let epsilonForIntegrals = 2 ** -16;
let pdfOfSum = (pdf1, pdf2, cdf1, cdf2, z) => {
let bounds1 = getBounds(cdf1);
let bounds2 = getBounds(cdf2);
let bounds = [
Math.min(bounds1[0], bounds2[0]),
Math.max(bounds1[1], bounds2[1]),
];
let result = 0;
for (let x = bounds[0]; (x = x + epsilonForIntegrals); x < bounds[1]) {
let delta = pdf1(x) * pdf2(z - x);
result = result + delta * epsilonForIntegrals;
}
return result;
};
```
## Cumulative density functions
TODO
## Inverse cumulative density functions
TODO
# To do:
- Provide sources or derivations, useful as this document becomes more complicated
- Provide definitions for the probability density function, exponential, inverse, log, etc.
- Provide at least some tests for division
- See if playing around with characteristic functions turns out anything useful

View File

@ -0,0 +1,32 @@
# Processing confidence intervals
This page explains what we are doing when we take a 95% confidence interval, and we get a mean and a standard deviation from it
## For normals
```js
module Normal = {
//...
let from90PercentCI = (low, high) => {
let mean = E.A.Floats.mean([low, high])
let stdev = (high -. low) /. (2. *. 1.6448536269514722)
#Normal({mean: mean, stdev: stdev})
}
//...
}
```
We know that for a normal with mean $\mu$ and standard deviation $\sigma$,
$$
a \cdot Normal(\mu, \sigma) = Normal(a\cdot \mu, |a|\cdot \sigma)
$$
We can now look at the inverse cdf of a $Normal(0,1)$. We find that the 95% point is reached at $1.6448536269514722$. ([source](https://stackoverflow.com/questions/20626994/how-to-calculate-the-inverse-of-the-normal-cumulative-distribution-function-in-p)) This means that the 90% confidence interval is $[-1.6448536269514722, 1.6448536269514722]$, which has a width of $2 \cdot 1.6448536269514722$.
So then, if we take a $Normal(0,1)$ and we multiply it by $\frac{(high -. low)}{(2. *. 1.6448536269514722)}$, it's 90% confidence interval will be multiplied by the same amount. Then we just have to shift it by the mean to get our target normal.
## For lognormals

View File

@ -1,5 +1,7 @@
// @ts-check
// Note: type annotations allow type checking and IDEs autocompletion
const math = require("remark-math");
const katex = require("rehype-katex");
const lightCodeTheme = require("prism-react-renderer/themes/github");
const darkCodeTheme = require("prism-react-renderer/themes/dracula");
@ -14,7 +16,7 @@ const config = {
onBrokenLinks: "throw",
onBrokenMarkdownLinks: "warn",
favicon: "img/favicon.ico",
organizationName: "QURIResearch", // Usually your GitHub org/user name.
organizationName: "quantified-uncertainty", // Usually your GitHub org/user name.
projectName: "squiggle", // Usually your repo name.
plugins: [
@ -47,13 +49,15 @@ const config = {
sidebarPath: require.resolve("./sidebars.js"),
// Please change this to your repo.
editUrl:
"https://github.com/foretold-app/squiggle/tree/master/packages/website/",
"https://github.com/quantified-uncertainty/squiggle/tree/master/packages/website/",
remarkPlugins: [math],
rehypePlugins: [katex],
},
blog: {
showReadingTime: true,
// Please change this to your repo.
editUrl:
"https://github.com/foretold-app/squiggle/tree/master/packages/website/",
"https://github.com/quantified-uncertainty/squiggle/tree/master/packages/website/",
},
theme: {
customCss: require.resolve("./src/css/custom.css"),
@ -111,6 +115,15 @@ const config = {
darkTheme: darkCodeTheme,
},
}),
stylesheets: [
{
href: "https://cdn.jsdelivr.net/npm/katex@0.13.24/dist/katex.min.css",
type: "text/css",
integrity:
"sha384-odtC+0UGzzFL/6PNoE8rX/SPcQDXBJ+uRepguP4QkPCm2LBxH3FA3y+fKSiJ+AmM",
crossorigin: "anonymous",
},
],
};
module.exports = config;

File diff suppressed because it is too large Load Diff

View File

@ -17,7 +17,10 @@
"clsx": "^1.1.1",
"prism-react-renderer": "^1.2.1",
"react": "^18.0.0",
"react-dom": "^18.0.0"
"react-dom": "^18.0.0",
"remark-math": "^3",
"rehype-katex": "^5",
"hast-util-is-element": "2.1.2"
},
"browserslist": {
"production": [

View File

@ -40,6 +40,16 @@ const sidebars = {
},
],
},
{
type: "category",
label: "Internal",
items: [
{
type: "autogenerated",
dirName: "Internal",
},
],
},
],
// But you can create a sidebar manually

File diff suppressed because it is too large Load Diff

1103
yarn.lock

File diff suppressed because it is too large Load Diff